

1

Attività 2025 Richieste 2026

ALICE 3-RICH project

Rome, 10/07/2025

Giacomo Volpe (University & INFN, Bari) On behalf of the ALICE 3 RICH WG

Italian participating institutes

Institute	Commitment
University & INFN Bari, Polytechnic of Bari	Module integration studies and design of mechanics, aerogel characterization, simulation and physics performance assessment
University & INFN Salerno	Sensor characterization at the operating temperature of -40°C and annealing studies
INFN Torino	FEE ASIC
INFN LNGS-NOA*	SiPM wafer qualification tests-dicing-packaging and SiPM mounting on interposer and post assembly acceptance tests

In collaboration with FBK for the SiPM R&D

*ALICE Associate Member soon

ALICE 3 - RICH

z[m]

	Barrel RICH	Forward RICH disks	bRICH layout	bRICH number of	fRICH number of	bRICH SiPM area	bRICH aerogel	fRICH SiPM area [m ²]	fRICH aerogel area [m ²]
Radius (m)	0.9 to 1.2	0.15 to 1.2		modules	modules	[m ²]	area [m²]		
z range (m)	-3.50 to 3.50	±4.3							
Surface (m ²)	28	9	Draiastiva						
Acceptance	$ \eta < 2$	$2 < \eta < 4$	Projective	864	220	18	22.7	7.5	6.6
Granularity (mm ²)	1×1 to 2×2	1×1 to 2×2	η < 2			_0		. 10	010

ALICE 3 - RICH

The Cherenkov radiator comprises hydrophobic aerogel tiles ($15 \times 15 \times 2 \text{ cm}^3$ refractive index n = 1.03)

ALICE

The photodetection layer, positioned 20 cm from the radiator, relies purely on proximity focusing.

Each photon detector module covers an area of approximately 20×20 cm², featuring an optimized SiPM pixel size of 2×2 mm².

RICH Working Group Organization

Coordinator: Giacomo Volpe

WP1: Detector and physics performance simulations

WP3: SiPM module

WP2: SiPM sensor and module characterization

WP4: FEE and RO system

WP5: Aerogel

WP6: Cooling and annealing

WP7: Mechanics

WP8: Integration

RICH timeline

			20	23			202	24			2025	5		20	26			202	27		20	28			20	29			20)30			203	1		2	032			203	33		2	2034	4		2	035	
								Run	3													.S3													R	un 4	L .									LS4			
		Q1	Q2	Q3	Q4	Q1 (22	Q3 (24	21 (Q2 Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4	Q1 (2 0	(3 C	4 Q	1 Q	2 Q3	Q4	Q1	Q2	Q3 Q	4 C	21 Q	2 Q	13 C	4 Q1	Q	2 Q3	Q4
																		_																															
	Aerogel							[Desi	gn				P	rotot	ypin	g			Pr	ototypi	ng	EDR	Pre	e-pr	od l	PRR		Р	roduc	tion	۱																	
	Sensor							(Desi	gn				P	rotot	ypin	g				Prototy	ping		EDR	Pr	re-pro	d	PRR				F	rod	uctio	n					~		6	3		_	_		S	
_	ASIC							[Desi	gn				P	rotot	ypin	g				Prototy	ping		EDR	Pr	re-pro	d	PRR				F	rod	uctio	n					Cont			n G)	IIISU			mm	
RICH	Module											Desi	gn			Pr	otot		TDR		Prototy	ping		EDR	Pr	re-pro	d	PRR				F	rod	uctio	n					ting			suri			=		nissi	
-	Mechanics											Desi	gn			Pr	otot				Prototy	ping		EDR	Pr	re-pro	d	PRR				F	rod	uctio	n					enc			race					oni	
	Service													(esigr	1						Pro	ototy	ping								Proc	uren	nent						~		6	à					Вu	
	Detector																							As	sem	bly te	st					As	seml	bly															

Aerogel characterization

600

700

- Trasmittance • measurements
- Refractive index measurements performed
 - setup under finalization

Simulation studies

- Test beam setup simulation
- Measured angular resolution (≈ 4.2 mrad) better than that from MC simulation
 (≈ 5.8 mrad)
 - Understood: ref. Index gradient in the tile → improvement in the physics performance
- Module size optimization
 - From trapezoidal shape (≈ 28 m² active area) → rectangular shape (≈ 18 m² active area)
- Gaseous radiator to extend electron ID $p_{\rm T}$ range
- Physics performance studies
 - Di-electron invariant mass spectrum.

ASIC development

• Requirements

- Environment with very-high potential pile-up of dark counts because of the radiation damage of the SiPM.
 - Very short acquisition gate required, ~ 1 ns
- ToA with resolution \lesssim 50 ps RMS.
- Thermal Dissipation under 500 mW/cm².

ALCOR (A Low Power Chip for Optical sensors Readout) is an ASIC developed to readout silicon photomultipliers at low temperature. The chip is designed in a 110 nm CMOS technology

ALCOR for DUNE: **DENEB** (**D**UNE Integrated **E**lectronics for **Ne**utrino **B**eams) \rightarrow 1024 ch.

Need for specific modifications for ALICE 3 will be evaluated in 2026

Beam test 2024 at CERN PS

- SiPM array with 2 mm of pitch
- Position measurement still based on the Petiroc 2A boards
- All the boards with common clock and trigger signals
- Prototype still based on on-the-shelf components
- Test aerogel focusing configuration

8 GeV/c positive beam (π^+ , K⁺, p)

Beam test 2024 at CERN PS

- Timing measurement:
 - Sinergy with DRD4
 - New custom front-end boards based on Radioroc/Weeroc and picoTDC/CERN
 - Read-out and DAQ with Mosaic boards
 - Correcting for time walk and ch by ch offset, a Δt_{max} res. down to \approx 50 ps is achieved \Rightarrow Better than 35 ps at single SiPM level.

• Need for mesurement with high-speed digitizer to remove the read-out electronics contribution to the time uncertainties!

Beam tests 2025 (July and September)

- Electron ID performance with gaseous radiator
- Reconstruction performance with irradiated arrays
- Performance studies with ALCOR v2 ASIC (Sept)

FMC. slot 1 FMC slot 2 FPGA DDR3

ALCOR board

SiPMs radiation damage mitigation

- High radiation load expected in the barrel (NIEL ~ 8.4 x 10¹¹ 1 MeV neq/cm²) → SiPM DCR increase increases beyond acceptable limit.
 - Improve SiPM radiation hardness.
 - SiPM technology (Back Side Illuminated, CMOS-SPAD).
 - SiPMs irradiation campaign.
 - Light concentrators.
 - Development of cooling/annealing systems → operating temperature -40 °C.

Light concentrated on the receiver without tracking the source

AIDAInnova project proposal

DEVELOPMENT OF INNOVATIVE LIGHT CONCENTRATORS FOR SIPMs BASED ON IMMERSION GRADED INDEX OPTICS AND METALENSES AND THEIR APPLICATION TO RICH DETECTORS

By INFN BARI (leadership, simulations, prototype testing), FBK, Technical University of Liberec and...

STEP 0: using light concentrators with reflective parabolic surface or full fused silica concentrators benefits: reduce sensitive surface -> reduce DCR and photodetector cost

NEXT STEP: light concentrators based on immersion graded index optics

Ultimate step: metalenses.

Benefits: improve PDE by increasing the fill factor better timing by focusing photons in the SPAD center

RICH 2026 plans

- Interposer study for cooling
 - operating temperature -40 °C
 - Collaboration with LHCb colleagues and Hamamatsu
 - Acquire CO2 dual-phase lab cooling system

RICH 2026 plans

SiPM module concept

- SiPM die: a single piece of Silicon used for the SiPM array consisting of 5 x 3
 SiPMs (each SiPM has a pitch of 2.0 mm, considering the distance between neighboring SiPMs of 0 um) yielding 10 x 6 mm²
- SiPM tile: 5 x 12 dice (60x25 = 900 SiPMs), considering 2.0 mm distance between neighboring dice in the x-direction, and 1.08 mm distance in the ydirection, yielding a tile area of 60.0 x 85.96 mm²
- Module: consists of 3 x 2 FEE Tiles (Modules), or 900 x 6 = 5,400 SiPMs and 6 1024 Ch. ALCOR chips, yielding a segment equivalent FEE-module area of 170 x 180 mm²

A SiPM engineering run needed!

RICH 2026 plans

And also

- Beam test
 - Light concentrators
 - Cooling
- Simulation studies
- Aerogel characterization
- Mechanical structure studies

Budget request

Missioni								
Sezione	Importo	Descrizione						
	40 k€	2 Test beam da 2 sett. al CERN x 8 pers.						
Dori	20 k€	Campagne di irraggiamento SiPM a Trento e LNL						
Bari	3 k€	1 settimana per due persone ai LNGS per studi integrazione modulo						
	4 k€	partecipazione riunioni al CERN (2 riunioni di 5 gg ciascuna) (DRD4 WP 4.4)						
Salerno	10 k€	2 Test beam da 2 sett. al CERN x 2 pers.						

Consumo, inventario, etc							
Sezione	Importo	Descrizione					
	100 k€	SiPMs engineering run					
	70 k€	Studio prototipo interposer e sistema di cooling					
Bari	5 k€	1 wafer di chip DENEB					
	10 k€	scintillatori e meccanica per test-bench di misura timing con sorgente di sodio (DRD4 WP 4.4.1, WP 4.4.2)					
	25 k€	32 ch. SAMPIC waveform digitizer (DRD4 WP 4.4.1, WP 4.4.2)					
Salerno	140 k€	Chiller a CO ₂ bifasica per studi di cooling in laboratorio					

Milestone

- Milestone 2025 (31/12/2025): Ottimizzazione configurazione interposer con annesso sistema di raffreddamento a microcanali → 30 %
- Milestone 2026 (31/12/2026): Studio integrazione modulo

Chiller offer

TRADE OFFER: no 2/2025	DATE: 23.05.2025
FROM: ZPD CEBEA Sp. z o.o.	TO: University of Salerno
igor Wójtowicz	Daniele De Gruttola
e-mail: nt@cebeabochnia.pl	e-mail: ddegruttola@unisa.it

MARTA - Monoblock Approach for a Refrigeration Technical Application

Version: Enhanced - according to previous orders and Price Enquiry Technical Specification Supply of CO2 plant MARTA units from April 2020

Cooling power	300 W* @ -27.5 oC, T ambient = 20 oC
Set Point temperature range	-35 oC to +20 oC
Temperature stability	+/- 1 oC
CO2 mass flow rate	controlled 0-5 g / s
Maximum head pressure	6 bar
Mass flow-meter type and operation range (additional option)	Coriolis - 0-5 g / s
Pressure sensors on the CO2 process	Absolute
Pipework material	Stainless steel 304 or 316

* Not less than 250 W at ambient conditions t ≤ 20°C (to be confirmed during commissioning). Cooling capacity depends on several factors and conditions on user side: CO2 pressure drop in experiment, ambient temperature, length of transfer line, external heat loss.

External dimensions	1410x930x700
Power supply	230V/AC, 50 Hz
Control cabinet with additional fan	YES
Control system	PLC+HMI
HMI on MARTA unit	YES
Remote access via desktop software - local web interface to HMI (Ethernet connection)	YES
MODBUS interface (TCP/IP (2nd Ethernet) and/or ASCII (RS-232))	YES
Local data logging on USB memory stick	YES
CO2 transfer line length	3 m

 CEBEA
 Sp. z o.o.

 Tel
 14 611 70 51, 14 612 24 64 www.cebeabochnia.pl

 NIP
 8681965782
 Bank Pekao S.A O/Tarnów 26 1240 1910 1978 0011 3677 9211

 32-700 Bochnia , ul. Krasińskiego , 29
 32-700 Bochnia , ul. Krasińskiego , 29

TRADE OFFER: no 2/2025	DATE: 23.05.2025	
FROM: ZPD CEBEA Sp. z o.o.	TO: University of Salerno	
igor Wójtowicz	Daniele De Gruttola	
e-mail: nt@cebeabochnia.pl	e-mail: ddegruttola@unisa.it	

Total net price of the MARTA device, according to above specification is 119 750,00 € **

** the price includes costs of license, packing, tests and research, but it does not include costs of shipping, activation or auxiliary equipment, which need to be added separately.

PRODUCTION TIME

Production time is 17 weeks (count from the day of receiving official order)

COMMISSIONING AND TRAINING

If requested, Service Representative from Supplier may assist during commissioning, on additional cost

AUXILIARY EQUIPMENT

Mass flow-meter type Coriolis - 0-5 g / s	9 840,00 €
CO2 filling equipment with standard vacuum pump	1 115,00 €
CO2 filling equipment with a dry diaphragm vacuum pump	3 075,00 €

Parts of auxiliary equipment can be purchased separately.

ZPD CEBEA Sp. z o.o. Tel. 14 611 70 51, 14 612 24 64 www.cebeabochnia.pl NIP 8681965782 Bank Pekao S.A O/Tarnów 26 1240 1910 1978 0011 3677 9211 32-700 Bochnia , ul. Krasińskiego , 29 Backup

Packaging: NOA facility at LNGS (Gran Sasso, Italy)

The DarkSide-20k experiment at LNGS

Dual-phase argon TPC for searching direct evidence of dark matter at the INFN underground laboratory LNGS, foreseen to begin operations in 2026

The TPC is equipped with SiPMs for detecting the prompt scintillation light

SiPMs based on FBK NUV-HD-Cryo Design

- ~21 m² TPC PDU (2 optical planes, Top and Bottom of the TPC)
- ~5 m² Veto PDU (all around the TPC)
- Total = 26 m² of SiPM
 - 1400 wafers (200 mm, 268 SiPM per wafer, 7.9 x 11.7 mm²)
 - SPAD size = 30µm
 - Yield by contract= 80%, actual is ~95%
 - Cathode on the backside, anode pads for wire bonding
- Photodetector Module (PDM) is 5 x 5 cm² single output
- PDU 20 x 20 cm² = 16 PDM with 4 differential output channels (1 channel = 4 PDMs summed)

SiPMs surface comparable to that needed for the ALICE 3 RICH!!

Packaging: NOA facility at LNGS (Gran Sasso, Italy)

We can benefit from the DarkSide experience!

The Nuova Officina Assergi: future perspectives beyond DarkSide-20k (https://doi.org/10.22323/1.441.0310)

Participating institutes

Institute	Commitment
INFN-Ba (Italy)	Module integration studies and design of mechanics, aerogel characterization, simulation and physics performance assessment
INFN-Sa (Italy)	Sensor characterization at the operating temperature of -40 and annihiling studies
INFN-To (Italy)	FEE ASIC
INFN- LNGS NOA (Italy)	SiPM wafer qualification tests-dicing-packaging and SiPM mounting on interposer and post assembly acceptance tests
UNAM Mexico City (MEXICO)	Readout
Politecnico Bari (Italy)	Cooling & Annealing
FBK (Italy)	SiPM R&D
INAOE Puebla (MEXICO)	FEE ASIC
Wigner Institute, Budapest (HUNGARY)	Readout
NISER Jatni (INDIA)	Aerogel characterization
MCAST (Malta)	Cooling & Annealing
Sofia Univ. Faculty of Physics (Bulgaria)	Sensor characterization

