

ALICE 3 TOF: ATTIVITÀ IN CORSO E PROSPETTIVE FUTURE

<u>S.Bufalino, M.Colocci, A.Rivetti</u> (grazie al contributo di molt* collegh*)

Riunione referee ALICE – Roma, 9-10 luglio 2025

ALICE 3 TOF: layout

- Silicon detector with tracker-like mechanics
- Key challenge: 20 ps timing resolution
- Moderate constraints on rates, space resolution, material budget

ALICE

International Collaboration with <u>INFN Leadership</u>: Brasil, South Africa, Japan*, China*, Netherlands* Interest from India and Rumenia

*(new institutes)

INFN Units and Universities involved: Bologna, Torino, (Unito, UPO and Polito) and Trento

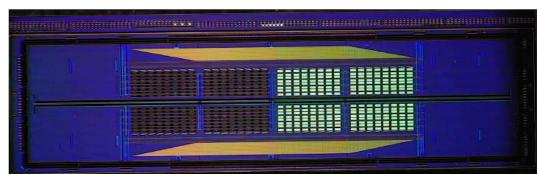
 Table 10: TOF specifications. The Outer TOF barrel length, the Forward TOF radius and the hit rates have been updated with respect to the LoI values.

	Inner TOF	Outer TOF	Forward TOF disks
Radius (m)	0.19	0.85	0.15 to 1.0
z range (m)	-0.62 to 0.62	-3.50 to 3.50	±3.70
Area (m ²)	1.5	37	6
Acceptance	$ \eta < 1.9$	$ \eta $ < 2	$2 < \eta < 4$
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	200	15	280
Material thickness ($\%X_0$)	1 to 3	1 to 3	1 to 3

R&D strategy in 2024-2025

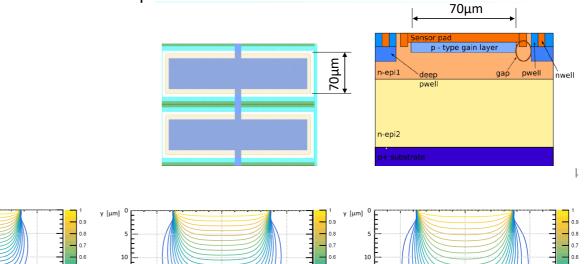
- Focus on monolithic sensors
 - need to push the timing resolution well beyond the state of the art
- Chosen approach: add a gain layer to a standard CMOS process
 - synergy with the INFN ARCADIA project (LF 110 nm): re-use of existing masks with custom substrates and addition of a gain layer
 - 3 short loop runs so far (1 in 2023, 2 in 2024)
 - CMOS-LGAD chip with sensor and front-end electronics (Madpix)
- Synergy advantages :
 - Implementation with a novel sensor concept at a very reduced cost
 - Provides enough information to understand key issues
 - Fine-tuning of sensor simulations in TCAD with inputs from measurements
- Synergy drawbacks:
 - Constraints on collection electrode geometry
 - Not possible to reach the ultimate time resolution without a full set of dedicated masks
 - \rightarrow full Engineering Run needed in the near future

ALICE


- Characterization
 - In the lab (electrical, source, lasers)

y (µm

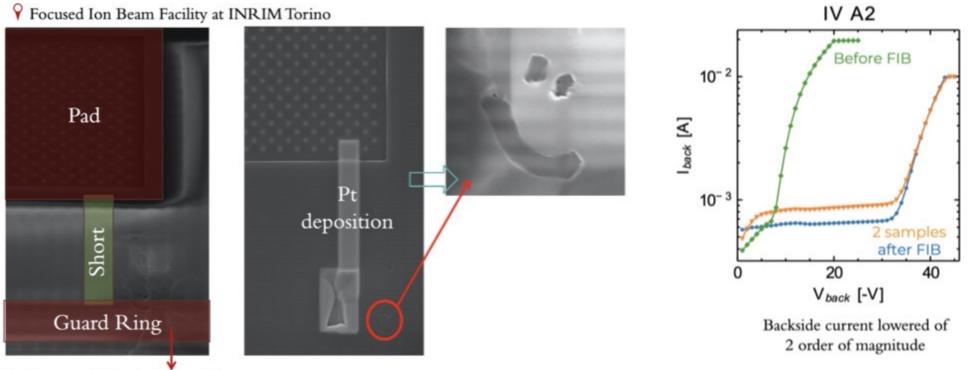
10


15

Beam tests

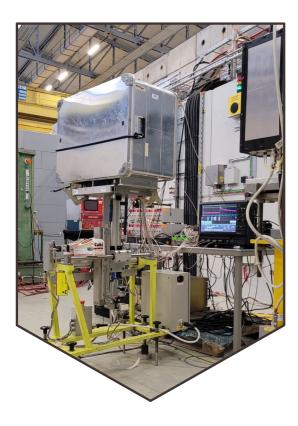
- 8 matrix with 64 pixels each
- Chip size: 16.4 mm x 4.4 mm
- Embedded front-end and output buffers
- Oscilloscope readout

15


15

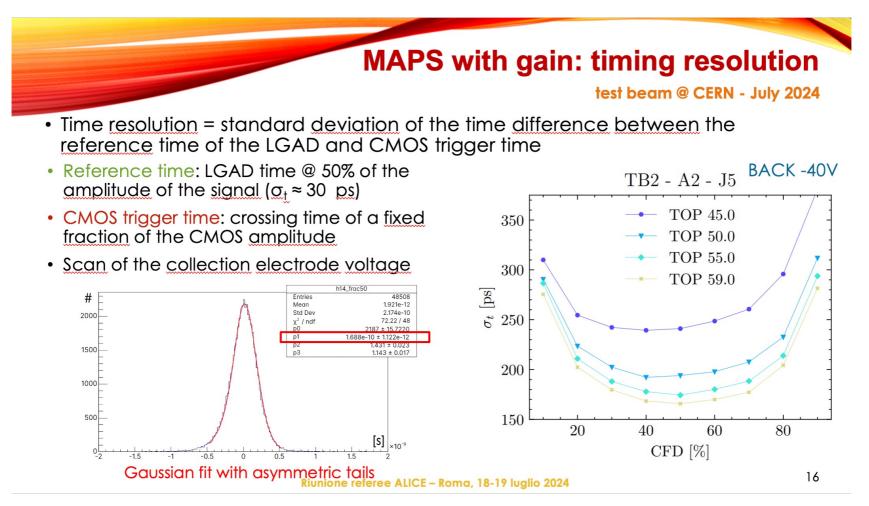
ALICE

Reducing back-side currents


V Focused Ion Beam Facility at INRIM Torino

Floating guard ring to be shorted

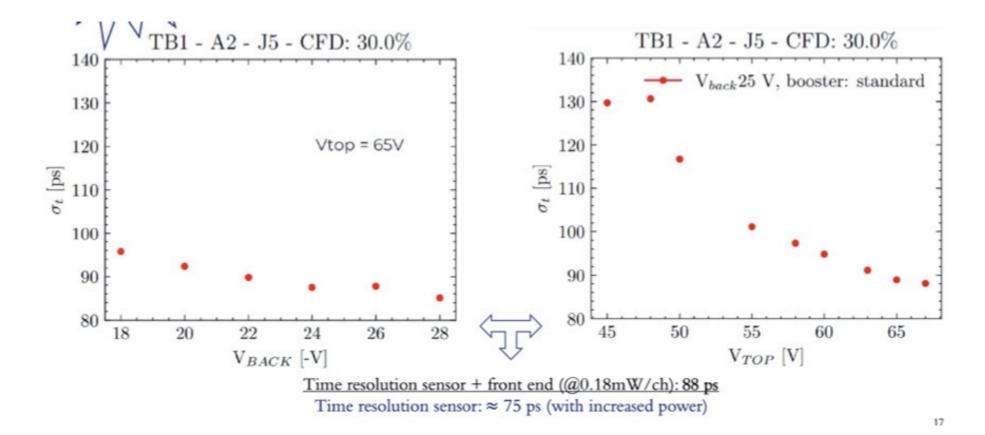
Beam tests at CERN PS



Beam-test setup (INFN-BO-TO) @ CERN-T10 Plane 1 Plane 2 Plane 3 Plane 4 Beam 10 GeV/c Trigger: LGAD MadPix Reference » 4 planes telescope » MadPix linked to a Xilinx FPGA controlled in control room

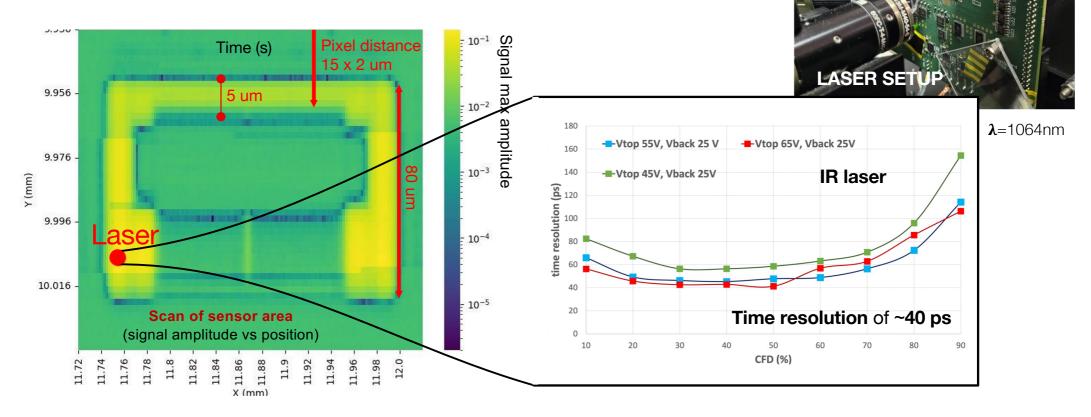
Readout -> Oscilloscope for signal acquisition

ALICE


Results: one year ago

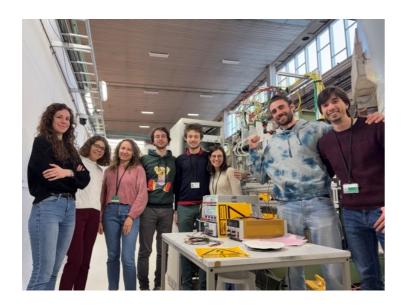
7

Results: today

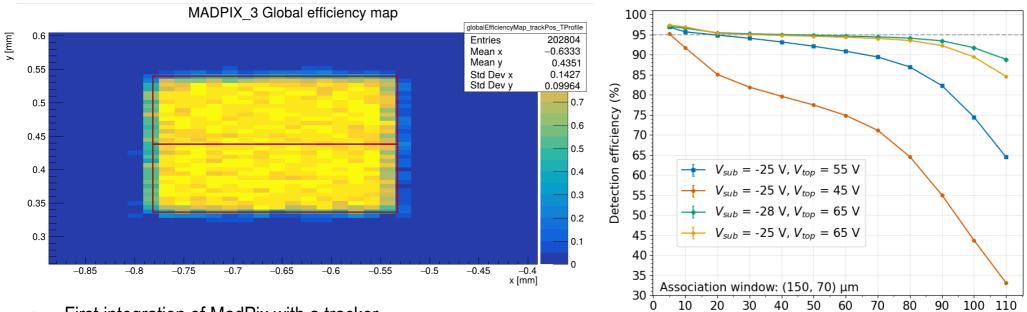


8

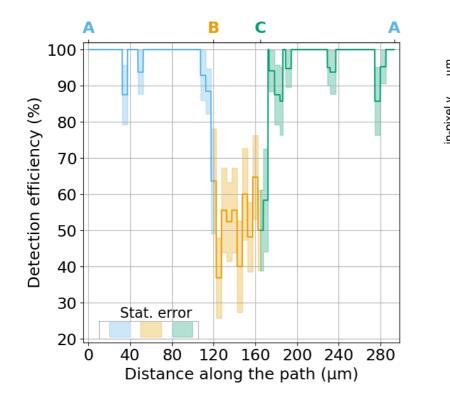
Characterisation with a laser setup

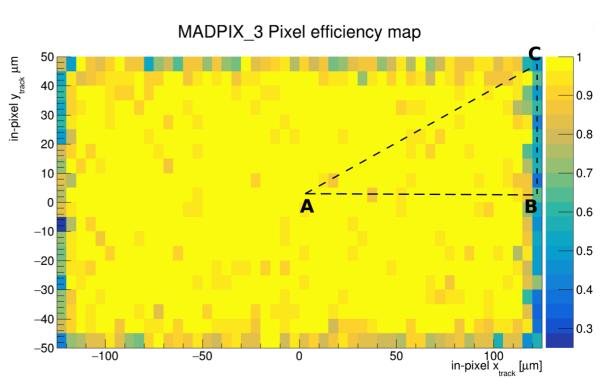

- Characterisation of active structures performed with IR laser **ongoing**:
 - allows for the estimation of the gain with a focused beam spot (~7 μm)
 - needed for measuring the jitter contribution to the total time resolution
 - Next: different FEE amplification params, thinner sensors with higher gain

DESY beam tests


- 6 MIMOSA planes
- Active area: 2 cm x 1 cm
- 115.2 us per cycle, 2 cycle readout
- DAQ System: AIDA TLU
- Without DUT: 2kHz event rate
- Trigger w. DUT: 10-100 particles s⁻¹ mm⁻²
- Track resolution: 1.8 um

DESY beam tests: preliminary

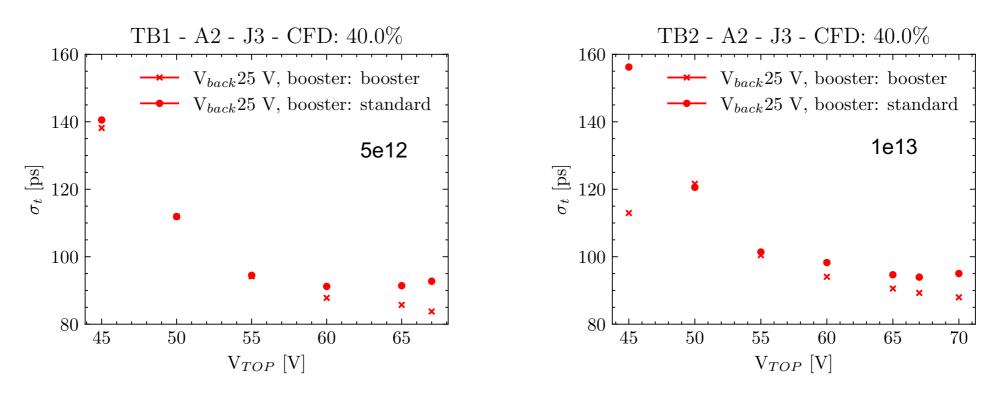


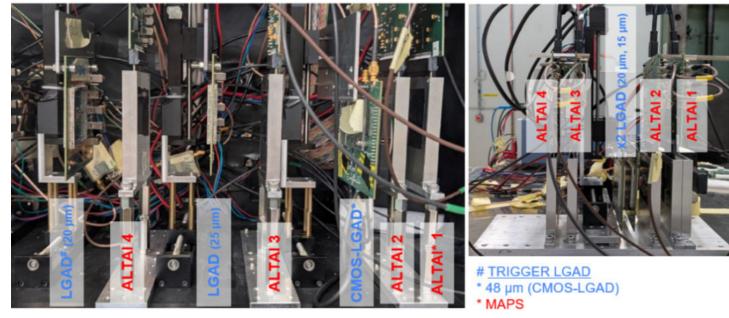

- First integration of MadPix with a tracker
- Efficiency studies and time resolution mapping
- Very stable system running
- Time resolution fully compatible with CERN test beam results

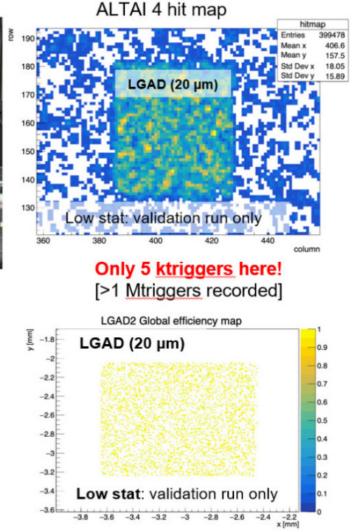
Threshold (mV)

ALICE

DESY beam tests: preliminary



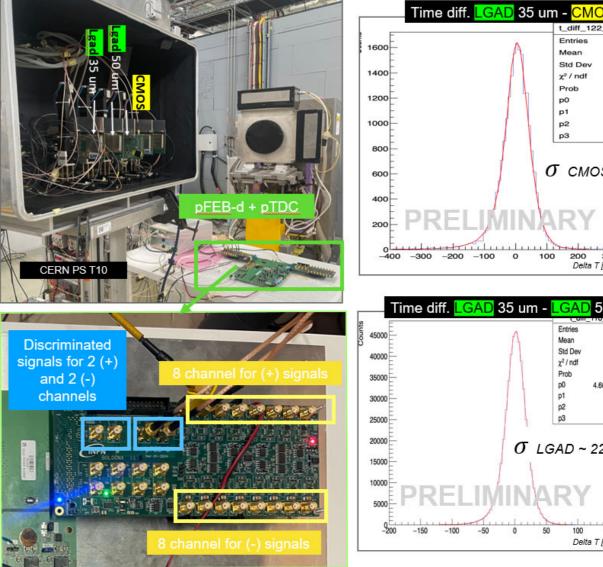


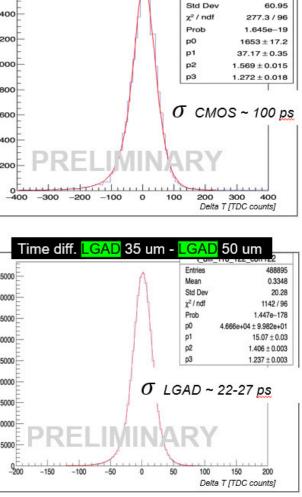


July CERN beam test with irradiated sensors (not even preliminary...)

(CMOS-)LGADs w. ALTAI trackers

- Test beam at CERN-PS (ended yesterday) now equipped also with ALTAI trackers (on top of LGAD reference planes) for mapping the time resolution and efficiency of CMOS-LGAD prototypes
- Versatile setup, data acquired with π/p at 10 GeV/c (almost top energy for minimizing the multiple scattering)
- Data being analysed looking into hybrid LGADs (FBK prototypes) as a benchmark, being the CMOS-LGAD the targeted DUT
- Next: adding more tracker planes, next CMOS-LGAD prototypes; possibility to go to SPS (higher energy, more focused beam)


Beam test with digital acquisition of (CMOS)-LGAD sensors (25/06/25-09/07/25)


- DUTs: 2 LGADs(35-50 um) + 1 CMOS-LGAD prototypes
- pFEB-d board: fast discriminator (up to 16 positive and 16 negative signals)
- picoTDC (3.05 ps resolution)

resolutions acquired Time with the oscilloscope (analog DUT signals) compatible with the ones obtained with the full readout chain (DUT+disc.+TDC)!

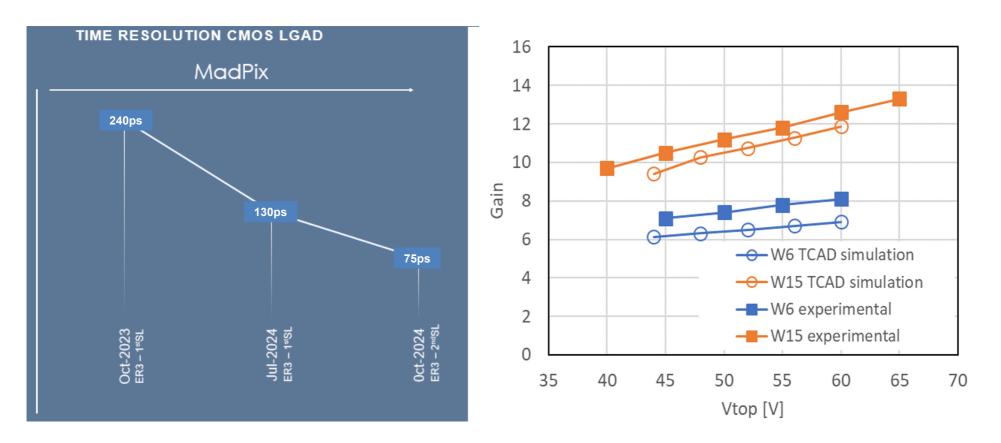
The pFEB-d + pTDC readout was tested at different thresholds. The runs show promising results : time resolution near ~100 ps for the CMOS-LGAD prototype and ~22-27 ps for the LGADs.

both the pFEB the pTDC requirements on the input signal, amplifiers of ~45 dB were put on the LGADs in order to exploit the ToT correction at its best.

t_diff_122_117_corr117

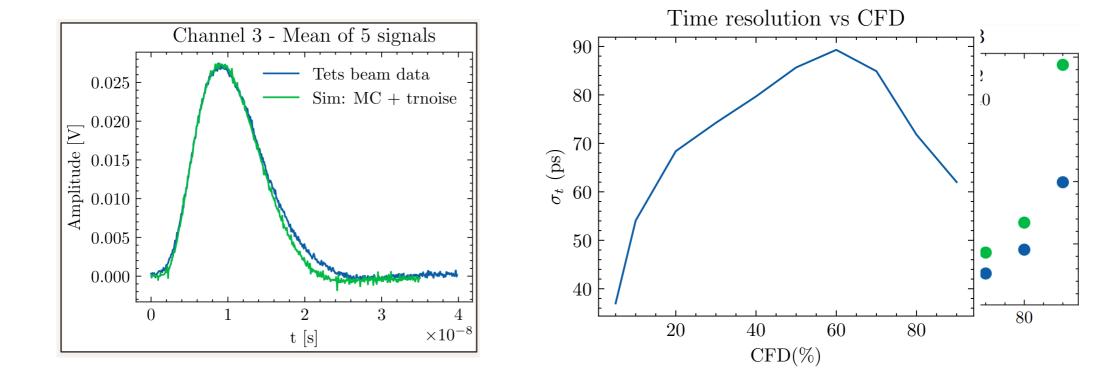
21638

0.4455

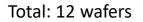

Entries

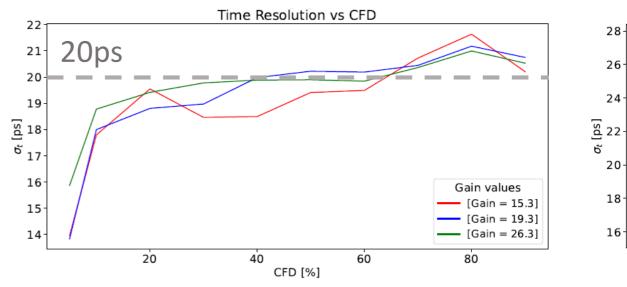
Mean

bianca.sabiu@cern.ch



One year of improvements - 1




One year of improvements - 2

2025 Final short loop fabrication: wafer splittings and predicted performance

N. wafers	Starting material	P-gain implant dose
1	A (n 20um)	No gain
1	A (n 20um)	Gain dose 1
2	A (n 20um)	Gain dose 2
1	B (n 15um)	No gain
1	B (n 15um)	Gain dose 1
2	B (n 15um)	Gain dose 2
1	C (p 15um)	(no gain)
1	C (p 15um)	Gain dose 1
2	C (p 15um)	Gain dose 2

Monte Carlo simulations:

- Timing resolution close to 75ps for 48µm active thickness (also measured on devices currently available)
- Predicted timing resolution close to 20ps for 15µm active thickness

10-

8-

4-

2 -

0-

6-[۲/۲]

ALICE

What next?

- Implementation of CMOS-LGAD has been very successful so far
- Initial hiccups not due to fundamental reasons and properly fixed
- The 2025 short loop is the last that makes sense with the ARCADIA masks
- Ultimate time resolution needed by ALICE3 can not be achieved due to pixel aspect ratio
- 2034 is (unfortunately...) tomorrow
- We need to move from a sensor-oriented R&D to a system-oriented design
- Impossible to make progress without a dedicated mask sets

The timing budget

$$\sigma_t = \sqrt{\sigma_{sensor}^2 + \sigma_{preamp}^2 + \sigma_{TDC}^2 + \sigma_{clk}^2}$$

- TDC contribution: 3 ps (requires 10 ps binning)
- Clock jitter: 3 ps
- Preamplifier jitter: 10 ps rms
- Sensor budget: 17 ps rms
- Estimated power: 0.2 W/cm²
- TDC and PLL do not require particular R&D, but very good engineering

An other timing budget

	Q3 2025	Q4 2025	Q1 2026	Q2 2026	Q3 2026	Q4 2026	Q1 2027	Q2 2027	Q3 2027	Q4 2027	Q1 2028	Q2 2028	Q3 2028	Q4 2028	Q1 2029	Q2 2029	Q3 2029	Q4 2029
ER1 design																		
ER1 fab																		
ER1 test																		
ER2 design																		
ER2 fab																		
ER2 test																		
Prod. prep.																		

- Production, installation and commissioning take a big share
- We need to start working soon also on other engineering aspects (mechanics, etc..)
- Key commonality with tracking detectors

Milestones 2025

31/12/24 ALICE3 TOF - Caratterizzazione di sensori al silicio con Laser e fasci di particelle per lo studio della performance in termini di risoluzione temporale

30/06/25

Simulazioni TCAD, Garfield ++ e Allpix2 per ottimizzare, in termini di risoluzione temporale, il design dei sensori CMOS con guadagno sulla base dei risultati dei test in laboratorio e con fascio \rightarrow completata e i risultati delle simulazioni sono serviti da input **100%** per il prossimo short loop run che è in fase di ordine

31/12/25

Caratterizzazione di sensori al silicio in laboratorio e con fasci di particelle per lo studio della performance in termini di risoluzione temporale \rightarrow test beam al PS del CERN schedulati a fine giugno e fine ottobre. Sono stati già stati condotti dei test beam a DESY

100%

ALICE

Milestones e richieste 2026

1. (30/06/2026)

- Simulazioni TCAD e Monte Carlo per ottimizzare, in termini di risoluzione temporale, il design dei sensori in vista del primo Engineering run dedicato a CMOS-LGAD

2. (30/06/2026)

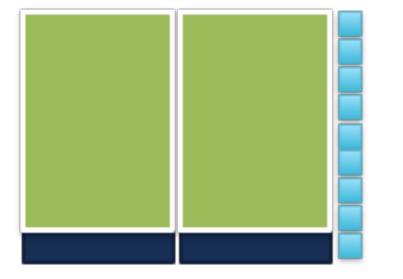
- Caratterizzazione di sensori del quarto short loop

3. (31/10/2026)

- Completamento del disegno dei dimostratori per ER1

Missioni per test beam

Sede	Importo k€
Bologna	23,5
Torino	23,5
Trento	9,5


Inventariabile, Licenze + Eng. Run

Sede	Importo k€
Bologna	42,5
Torino	42
Trento	5
ER	360

A Large Ion Collider Experi	nent		
Sede	Importo	Descrizione	ALIC
Bologna	6	Inventariabile: Strumentazioni per test su fascio: movimentatore a 2 assi, 2 LVPS	
Bologna	4	Inventariabile: FPGA programmazione CMOS-LGAD	
Bologna	18.5	Inventariabile: Strumentazione banco ottico: power meter, IR camera, focalizzatore, filtri, IR laser	
Bologna	10	Consumo: Test board prototipi CMOS-LGAD	
Bologna	4	Licenze: Tre postazioni per utilizzo del software applicativo CATIA per progettazione meccanica.	
Trento	5	Inventariabile: obiettivo con elevata apertura numerica per setup TPA esistente	
Torino	28	Inventariabile : setup per rendere pienamente funzionante TCT (finanziata nel 2024). Nel 2025 erano stati assegnati solo 8 kEuro dei 24 kEur richiesti. Reiteriamo parte della richiesta altrimenti la TCT non è utilizzabile.	
Torino	12	Inventariabile: Custom board per testare i CMOS-LGAD del nuovo ER	
Torino ++	360	TOF- Engineering run	
Torino	2	Licenza TCAD e Xilinx Vivado (per ZDC, Ma mettiamo insieme)	

ER organization

- Critical issue: signal and power propagation in the vertical direction
- To reduce time and risk: re-use IP already developed in the target or similar technologies and already very familiar to the designers
- ER1 chip final size in y and fully consistent. "Copy and repeat" to make ER2