A Large Ion Collider Experiment

ALICE ITS3 Status Report 2024-2025

P. La Rocca

NB: Info and plots from ITS3 Plenary meetings, WP meetings, conference talks, ...

Inner Tracking System (ITS3)

- ITS2 → ITS3: 3 innermost layers replaced
- Basic idea: minimize material budget (0.09 % X₀) and distance to interaction point

ITS3 Project Organization

ITS3 Project leaders A. Kluge, M. Mager										
WP1 Physics, Simulation, Reconstruction	WP2 Pixel Sensor ASIC Design	WP4 Thinning, Bending, Interconnection	WP5 Mechanics and Cooling							
F. Grosa, A. Rossi	G. Aglieri Rinella, W. Snoeys	D. Colella, G. Contin	M. Angeletti, C. Gargiulo							
WP3.1 Technology Demonstrator Characterisation and Qualification	WP3.2 Stitched Sensor Characterisation and Qualification	WP3.3 Qualification System & Detector Control System Design	WP6 Readout electronics, Power Supply and Services							
S. Senyukov	M. Suljic, H. Hillemanns	M. Keil, V. Sarritzu	O. Bourrion, S. Siddhanta/P. Giubilato							

ITS3 Milestones

MOU: Costs, Contributions and Responsibilities

01.07.24	2024	2025	2026	2027	2028	Total
	C&I	C&I	C&I	C&I	C&I	C&I
Total	1470	1671	480	100	180	3901
CMOS Sensor ASIC						2280
CMOS Sensor Fabrication	900	900				1800
Sensor Characterisation	180	150				330
Thinning/Dicing & Bending/Interconnect	75	75				150
Integration						930
Mechanics, Assembly & Test	100	150	100			350
Installation & Alignment	50	50	100	100		300
Air cooling	50	50				100
Installation & comissioning infrastructure					180	180
Readout Electronics						431
Common readout unit (CRU)		70				70
Detector Service Electronics (DSE)	40	50	100			190
Optical cables	5	6	30			41
Flexible Printed Circuit	70	60				130
Power Distribution						210
Power Supplies & Regulation		50				50
Power Cables		60	100			160
DCS (Detector control system)			50			50

Annex 5: Contributions and Responsibilities

13.07.24	С	ERN	cz	FR	п	KR	NL	N	0 5	SE	SK	TH	Total
Funding (kCHF)													
ITS3 C&I		947	145	420	850	284	66	0 2	50	245	80	20	390
33.07.24	CERN	cz	FR	π	KR	NL	NO	SE	SK	TH	+		
CMOS Sensor ASIC													
CMOS Sensor Fabrication	X	х	x	х	х	х	х	х					
Sensor Characterisation	X	х	x	х	х	х	х	х		X			
Thinning/Dicing & Bending/Interconnect	х			х	х								
Integration													
Mechanics, Assembly & Test	x			х									
Installation & Alignment	x												
Air cooling	x												
Installation & comissioning infrastructure	х		x	х									
Readout Electronics													
Common readout unit (CRU)			х	х			х						
Detector Service Electronics (DSE)			х	х		х	х						
Optical cables				х									
Flexible Printed Circuit	X		х	х		х							
Power Distribution													
Power Supplies & Regulation			х	х									
Power Cables				х									
DCS	x								х				
Physics performance & reconstruction	x		x	х									
Commissioning	X	X	X	x	х	x	х	х	X	X	14		

Table 5.2: Field of responsibilities of contributors for the ALICE ITS3 upgrade describing the technical involvement of contributor person power.

WP1: Physics, simulation and reconstruction

WP1: Physics, simulation and reconstruction

- Conveners: A. Rossi, F. Grosa
- Great effort in the preparation of the TDR
 - Detector layout
 - Heavy-flavour physics studies
 - Hypernuclei and c-deuteron
 - Strangeness tracking
- A good summary in: <u>TDR CERN-LHCC-2024-003</u> and <u>ALICE-PUBLIC-2023-002</u>
- Complete ITS3 geometry implemented in the ALICE O2
 framework
- New simulations with detailed geometry and precise dead zones inclusion done
- Realistic chip's response implemented
- ITS3 WP1 meeting merged with ITS2 software (WP2) meeting (from July 2024)

Cluster Size Distribution (Normalized)

7

WP2: Pixel Sensor ASIC design and WP3: Sensor Characterisation and Qualification

WP2: Pixel Sensor ASIC design and WP3: Sensor Characterisation and Qualification

INFN Contribution (BA, BO, CA, CT/ME, PD, TO, TS)

- Contribution to sensor design
- Contribution to sensor fabrication (330 kEUR in 2024, 110.5 in 2025 + 39.5 kEUR anticipated in 2024)
- Development of test systems (hardware and software)
- Sensor glueing and bonding
- Characterization of prototypes:
 - Distributed effort (several prototypes to be characterized)
 - Local lab measurements
 - Participation to testbeam and data analysis
 - Papers preparation
- Human resources:
 - INFN similfellows
 - PhD students, master students
 - Long-term presence at CERN...

Sensor roadmap

MLR1 (Multi Layer Reticle 1): qualification of the 65 nm CMOS

 Papers (INFN people in paper committees): DPTS: https://doi.org/10.1016/j.nima.2023.168589 https://arxiv.org/abs/2505.05867
 APTS-SF: https://doi.org/10.1016/j.nima.2024.169896
 APTS-OA: https://doi.org/10.1016/j.nima.2024.170034

ER1 (Engineer Run 1): first stitched MAPS

ER1 (Engineer Run 1): first stitched MAPS

MOSS - functional tests

- Several functional tests on all 82 MOSS
 - Yield ~89 % (~98% excluding readout issues)
- Good performance and uniform behavior
 - NO wafer or sensor position dependence

Beam test results

 Operational margin à confirmed performance from previous submissions

MOSAIX: Final size 2D stitched sensor

- 12 RSU
- Each RSU is divided in turn in 12 fully independent tiles (powering, control and readout)
 - Different pixel variants for operational margins
- Final ER2 submission → July 2025
- Very tight schedule for MOSAIX testing
- Test system (hardware, firmware and software) to be ready well before chips arrive
- + CHIPLETS

ø = 300 mm (12") silicon wafer

time

time

1) MOSAIX emulator \rightarrow ready!

2) Wafer probing \rightarrow with different needle probe cards

3) Lab & beam tests \rightarrow with options of sensor sizes and connections (e.g. FPC) \rightarrow **distributed effort**

4) Qualification model \rightarrow test of ITS3 layers

- Facilities at CERN PH Department Silicon Facility
- 2 probe systems, to be re-tested with ER2 pad wafer
- Different needle probe cards

	Cantilever r	needles Chip pads Backup option	-wire bonds Vertical needles					
	MOSAIX	HS (cantilever)	MOSAD	(HS (vertical)	N	- (F7 (vertical)		
Feature	Status	Target date	Status	Target date	Status	Target date		
Design	Done	-	Ongoing	ТВА	Done	-		
Design validation	Done	-	Ongoing	ТВА	Done	-		
Production	Done	-	Not started	August	Done	-		
Commissioning	Not started	End of May	Not started	August	Done			
	x !	5-10 Gbps	v :	5-10 Gbps		• 5-10 Gbps		

ITS3 - Referee meeting - July 10, 2025

ITS3 - Referee meeting - July 10, 2025

ER2 (Engineer Run 2): full size, full functionality sensor

QUALIFICATION MODEL (QM)

- Validate the integration and functionality of all ITS3 components under realistic operating conditions
- Identify and resolve **integration**-related issues before final production and installation
- Detailed step-by-step plan and derivables defined
- 2 QMs will be produced
- A **unified effort** among different Work Packages
- **Key INFN contribution** to the development of testing systems and QM

ALICE

WP4: Thinning, Bending, Interconnection and WP5: Mechanics and cooling

WP4: Thinning, Bending, Interconnection and WP5: Mechanics and cooling

• Conveners WP4: D. Colella, G. Contin

ğ 100%

989

flat June 2020 flat December 2019

> 24 mm 100 150 200 250

Threshold (e⁻)

Efficiency ociated trac 969 94%

> 5 92%

Bending MAPS (past)

- Bending MAPS sensors (WP4)
 - Silicon becomes flexible below 50 µm thickness
 - Bend existing MAPS sensors (ALPIDE) and small test structures
 - Measure the bent sensor performance and compare with flat sensors
- R&D carried out within INFN: ٠
 - Bending mechanics and procedures
 - Curvature precision measurements
 - Wire-bonding on curved surface
 - Laboratory characterization
 - In-beam performance measurements

ITS3 - Referee meeting - July 10, 2025

Bending MAPS (future)

Bending large area sensors:

- babyMOSS
 - First effort started in 2024
 - Challange: wire bonding on all 4 sides → Flexible
 PCB
 - Work ongoing
- MOSS
 - Difficulties in handling and bending single segment
 - Under evaluation
- babyMOSAIX
 - Useful for lab testing, testbeam with telescope, study of ageing through thermal cycles
- MOSAIX
 - Qualification Models (mainly @CERN)
- INFN interest in baby sensor bending activities

Mechanics – Bread Board Models

- Prototypes for air cooling
- Thermal and stability test:
 - Several Bread Board Models based on heating elements with carbon foam support structure
 - Placed in a custom wind tunnel, thermal and mechanical properties studied (BBM3)

Mechanics – Bread Board Models

- New **BBM6 done in Bari**, now at CERN for integration in an . upgraded wind tunnel
 - closer design to final
 - improved heaters design _
 - improved mapping and temperature precision _
- Next INFN activity: study of wire bond strength under air • flow conditions
 - Realization of a wind tunnel, equipped with flow meters _
 - Assembly of the prototype: bent sensors + FPC
 - Wire bonding and pull-force measures _

Mechanics – Bread Board Models

- New **BBM6 done in Bari**, now at CERN for integration in an . upgraded wind tunnel
 - closer design to final
 - improved heaters design _
 - improved mapping and temperature precision _
- Next INFN activity: study of wire bond strength under air . flow conditions
 - Realization of a wind tunnel, equipped with flow meters _

RICHIESTA 2026:

30k€ per attività WP5

- Assembly of the prototype: bent sensors + FPC
- Wire bonding and pull-force measures

- Conveners: S. Siddhanta, P. Giubilato, O. Bourrion
- Full scale model realization ongoing

Detector Service Boards

- Design of the boards done at Grenoble
- First prototypes produced, tests started
- INFN will participate in the test and qualification as part of full system tests
- 2 testbenches (CERN and PD)

Common Readout Unit (CRU)

- CRU common logic is a central development
- ITS3 will have a new User Logic
- INFN (CA and PD) is involved in the User Logic development

Qualification model:

- Cross WP development
- Will integrate all the final WP components
- Study integration issues
- Study WP6 component performance and qualify them in realistic settings

Detector Service Boards

- Design of the boards done at Grenoble
- First prototypes produced, tests started
- INFN will participate in the test and qualification as part of full system tests
- 2 testbenches (CERN and PD)

Common Readout Unit (CRU)

- CRU common logic is a central development
- ITS3 will have a new User Logic
- INFN (CA and PD) is involved in the User Logic development

Qualification model:

- Cross WP development
- Will integrate all the final WP components
- Study integration issues
- Study WP6 component performance and qualify them in realistic settings

Flexible Printed Circuit (FPC)

- Layout of a single segment is replicated multiple times depending on the layer
- Bonded on the sensor
- Design of FPC done at CERN, INFN (TS) involved in the characterization of FPC
- FPC prototype received, assembling the test system

Optical Fibers

- Under INFN responsibility
- Fragile elements → several optical link schemes under investigation
- Final choice based on mock-up evaluation
- The cost depends on the total fiber length
- Some fibers are custom-made

Optical Fibers

- Under INFN responsibility
- Fragile elements → several optical link schemes under investigation
- Final choice based on mock-up evaluation
- The cost depends on the total fiber length
- Some fibers are custom-made

RICHIESTA 2026: 40k€ per optical fibers

POWER SUPPLIES

PSUB -5V to DPB

- CAEN A2518 Obsolete but spares available from ITS2
- Alternative CAEN 2551

48V to DPB

- CAEN A2554 a new model received for tests
- Given the characteristics, we can use A2554 also for PSUB

LV cable integration study accomplished and first samples arrived

Under INFN responsibility

POWER SUPPLIES

PSUB -5V to DPB

- CAEN A2518 Obsolete but spares available from ITS2
- Alternative CAEN 2551

48V to DPB

- CAEN A2554 a new model received for tests
- Given the characteristics, we can use A2554 also for PSUB

LV cable integration study accomplished and first samples arrived

Under INFN responsibility

RICHIESTA 2026: 25k€ per power supplies

Financial requests 2026

Capitolo	Descrizione	Importo (kEUR)	Sede
Apparati	ITS3 CORE: contributo a meccanica	30	ВА
Apparati	ITS3 CORE: acquisto 3 CRU (18keuro) + Optical cables (40keuro) + Power Supplies (25keuro)	83	СА
Apparati	ITS3 core: contributo alla produzione, caratterizzazione, thinning e dicing del sensore CMOS	60*	ст
Missioni	Partecipazione Beam Tests	59	BA/CT/LNF/PD/TO/TS
Missioni	Richiesta specifica per attività WP6 al CERN	30	CA
Missioni	Richiesta specifica per attività WP6 al CERN	6	PD
Trasporti	ITS3: spedizioni schede, chip ed assemblati	14	BA/CA/CT/LNF/PD/TO/TS
TOTALE		282 (di cui 173 CORE)	

*60 kEUR chiesti per il 2025 ma NDB

Funding plan overview

tipo attività	2021 (k€)	2022 (k€)	2023 (k€)	2024 (k€)	2025 (k€)	2026 (k€)	2027 (k€)	totale richiesta INFN (k€)	totale ITS3 (k€)
R&D	200	300	150 WP3=100 WP4+5=50					700	2500
Costruzione CORE (assegnato)			ER2: 250	350* (340)	300 (200.5 + 39.5**)	100 +70	100	1100***	3901 (MOU)
Totale								1800	6400
Viaggi			50	50	70	95			

- * 65k€ richiesta straordinaria a settembre 2024
- ** 39.5 k€ anticipati nel 2024
- *** di cui 850 k€ secondo MOU

In grassetto voci aggiornate

		Data prevista per il completamento	Descrizione	Completamento al 30.06.2024 (%)	Commenti al 30.06.2024	Completamento al 31.12.2024 (%)	Commenti al 31.12.2024
4	ITS3	30/6/2024	ITS3 1: Partecipazione a beam test con sensori stitched	100	Risultati confermano i buoni risultati di efficienza di rivelazione ottenuti in test beam su test structures di piccola area. Altri test sono previsti nel corso dell'anno per completare la caratterizzazione	100	
5	ITS3	31/12/2024	ITS3 2: verifica performance sensore stitched curvato	30	Ricevuti mandrini high quality e piegato wafer non funzionante	80	Test sui sensori stitched curvati in fase di sviluppo, la veriifca delle performance è stata ritardata a seguito del prolungarsi dei test sui sensori stitched planari
6	ITS3	31/12/2024	ITS3 3: Invio alla fonderia del sensore stitched a grande area versione ER2	40	Disegno validato, ottimizzazioni finali in corso, alla luce di problemi rilevati durante i test su sensori MOSS (ER1)	80	Design del sensore ormai definito, in corso processi di verifica e ottimizzazione, con l'identificazione e la correzione di bug

		Data prevista per il completamento	Descrizione	Completamento al 30.06.2024 (%)	Commenti al 30.06.2024	Completa al 31.12.2	amento 2024 (%)	Commenti al 31.12.2024
4	ITS3	30/6/2024	ITS3 1: Partecipazione a beam test con sensori stitched	100	Risultati confermano i buoni risultati di efficienza di rivelazione ottenuti in test beam su test structures di piccola area. Altri test sono previsti nel corso dell'anno per completare la	100 %: bendin finalised studies o	bondin g proce ₀ Perfor on ER2 s	g and edure mance sensors
					caratterizzazione			
5	ITS3	31/12/2024	ITS3 2: verifica performance sensore stitched curvato	30	Ricevuti mandrini high quality e piegato wafer non funzionante	80)	Test sui sensori stitched curvati in fase di sviluppo, la veriifca delle performance è stata ritardata a seguito del prolungarsi dei test sui sensori stitched planari
6	ITS3	31/12/2024	ITS3 3: Invio alla fonderia del sensore stitched a grande area versione ER2	40	Disegno validato, ottimizzazioni finali in corso, alla luce di problemi rilevati durante i test su sensori MOSS (ER1)	80)	Design del sensore ormai definito, in corso processi di verifica e ottimizzazione, con l'identificazione e la correzione di bug

		Data prevista per il completamento	Descrizione	Completamento al 30.06.2024 (%)	Commenti al 30.06.2024	Completamento al 31.12.2024 (%	Commenti al 31.12.2024		
4	ITS3	30/6/2024	ITS3 1: Partecipazione a beam test con sensori stitched	100	Risultati confermano i buoni risultati di efficienza di rivelazione ottenuti in test beam su test structures di piccola area. Altri test sono previsti nel corso dell'anno per completare la	100 %: bondi bending proc finalised ₀ Perfc studies on ER2	ng and edure rmance sensors	~100% imminent submission (July 2025)	
					caratterizzazione				
5	ITS3	31/12/2024	ITS3 2: verifica performance sensore stitched curvato	30	Ricevuti mandrini high quality e piegato wafer non funzionante	80	Test sui sensor in fase di svilu delle performa ritardata a seg prolungarsi de stitched plana	ri stitched curvati ppo, la veriifca ance è stata uito del i test sui sensori ri	
6	ITS3	31/12/2024	ITS3 3: Invio alla fonderia del sensore stitched a grande area versione ER2	40	Disegno validato, ottimizzazioni finali in corso, alla luce di problemi rilevati durante i test su sensori MOSS (ER1)	80	Design del sen definito, in cor verifica e ottin l'identificazion di bug	sore ormai rso processi di nizzazione, con ne e la correzione	/

		Data prevista per il completamento	Descrizione	Completamento al 30.06.2025 (%)	Commenti al 30.06.2025	Completamento al 31.12.2025 (%)	Commenti al 31.12.2025
ITS 3	26	31/3/2025	Validazione sistema readout	20	Ricevuti i primi prototipi, test di validazione iniziati		
ITS 3	27	31/12/2025	Prima caratterizzazione di sensori MOSAIX	20	Sottomissione ER2 posticipata in base a nuova schedula LHC e arrivo dei sensori prevista a fine 2025. Sistemi di test validati e in fase di distribuzione		

	Data prevista per il completamento	Descrizione	Completamento al 30.06.2026 (%)	Commenti al 30.06.2026	Completamento al 31.12.2026 (%)	Commenti al 31.12.2026
ITS 3	31/12/2026	Verifica resistenza bonding soggetto a flusso d'aria				
ITS 3	31/12/2026	Realizzazione Qualification Model				
ITS 3	31/12/2026	Definizione e prima implementazione della User Logic della CRU				
ITS 3	31/03/2026	Definizione schema fibre ottiche e scelta alimentatori				
ITS 3	31/12/2026	Caratterizzazione di sensori MOSAIX				

Backup slides

Mechanics – Carbon Foam

Mechanics – Engineering Model (EM)

Prototypes for layout, assembly and installation procedures validation

3 Ems completed + EM4 ongoing ٠

MOSS Region variations

	Region 0	Region 1	Region 2	Region 3
ТОР	Standard	Larger input transistor (M1)	Larger discriminator input transistor (M11)	Larger common-source transistor (M2)
BOTTOM	Standard	Standard	Standard	Slightly different layout

- Top region 1: Larger M1
 - \circ less 1/f noise \rightarrow less noisy pixels at larger thresholds
 - larger input $C \rightarrow \text{worse S/N}$
- Top region 2: Larger L of M11
 - smaller threshold dispersion
 - larger capacitance OUTA \rightarrow lower gain \rightarrow worse S/N
- Top region 3: Larger W of M2
 - larger gain
 - Could push M1 out of saturation
- Bottom region 3: Smaller feedback capacitance
 - larger gain
 - more ringing

MOSS – testing campaign

Before picking and bonding on carrier:

Wafer-probing

In laboratory, 3 main steps:

- Impedance tests between power nets
- Power ramp (slowly by domain)
- Functional tests

Several functional tests on all 82 MOSS (~1640 HUs)

- Power on to check currents
- Slow control and digital circuitry (registers scans)
- Analog biasing (DAC scan)
- Matrix readout (digital, analogue scans)
- Analog matrix performance (threshold and FHR scans)
- to get performance, uniformity and yield

In beam test:

detection efficiency and Fake-Hit Rate (FHR)

In beam test:

- detection efficiency and Fake-Hit Rate (FHR)
 - ~80 days of data-taking last year on several sensors (~17)

MOSS – power ramp

Large number of **shorts** observed during ramping:

- Hotspot appear
- Often they disappear (after some time or voltage)
- Position reconstructed O(50-100 µm)

SEM (Scanning Electron Microscopy) cross section of the top two metal layers

1 RSU, thermal camera image

Reason understood:

- Correlated with crossing of metal lines on the top two metal
- Communicated to foundry that confirmed the issue → will be fixed for future sensors

→ Very important finding for yield next submission!

MOSS – Functional tests - Yield

Yield ~ 89 %

- ~98% excluding readout architecture issues (not relevant for future MOSAIX)

ER1 (Engineer Run 1): radiation tolerance studies

ITS3 - Referee meeting - July 10, 2025

ER1 (Engineer Run 1): first stitched MAPS

MOSS - functional tests

- Several functional tests on all 82 MOSS
 - Yield ~89 % (~98% excluding readout issues)
- Good performance and uniform behavior
 - NO wafer or sensor position dependence

Beam test results

 Operational margin à confirmed performance from previous submissions

ER1 (Engineer Run 1): first stitched MAPS

MOSS - functional tests

- Several functional tests on all 82 MOSS
 - Yield ~89 % (~98% excluding readout issues)
- Good performance and uniform behavior
 - NO wafer or sensor position dependence

Beam test results

 Operational margin à confirmed performance from previous submissions

ER2 - specification

Simulation parameters	Value	Unit	Conditions	
Particle Rates				
Pb-Pb Interaction Rate	164	kHz	Safety factor 2	
Particle flux (Hadronic)	2.55	$MHz cm^{-2}$	z=0 cm, all centralities.	
Particle flux (QED)	3.20	$ m MHzcm^{-2}$	z=0 cm.	
Total particle flux	5.75	$\rm MHzcm^{-2}$	cm^{-2} z=0 cm, all centralities.	
Geometry, timing, encoding	, data transfe	capacity		
Pixel dimensions	20.8×22.8	$\mu m \times \mu m$		
Tile pixel array size	442×156			
Pixels per Tile	68952			
Sensitive Area of the tile	0.328	$\rm cm^2$		
Tiles per segment	144			
Readout regions per tile	3 or 4			
Frame Interval Duration (FD)	2 or 5	μs		
Minimum average cluster size	2.1		$\Delta z = 0 \mathrm{cm}$, Fig. 3.43.	
Pixel hit encoding time	25	ns		
Bits per pixel hit	16	bit		
Capacity of tile link	160	$Mbit s^{-1}$		
Aggregated capacity (Segment)	23.04	$\rm Gbits^{-1}$		
Simulation results				
Average pixel occupancy	$< 2.0 imes 10^{-4}$		z=0 cm.	
Average pixel occupancy	$< 5.0 imes 10^{-4}$		$z=0 \text{ cm}, \text{ FD}=5 \mu \text{s}.$	
Data throughput	120	$Mbit s^{-1} Tile^{-1}$	z=0 cm.	
Data throughput	15.55	$\rm Gbits^{-1}Segment^{-1}$		
Data throughput per unit area	365	$\mathrm{Mbits^{-1}cm^{-2}}$	z=0 cm.	
Data throughput per unit area	329	$\mathrm{Mbits^{-1}cm^{-2}}$	Average over z.	
Data throughput per link	2.58	$\rm Gbits^{-1}$		
Incomplete event probability	$< 6 imes 10^{-5}$		Layer 0 segment.	
Incomplete event probability	$< 2 imes 10^{-4}$		Full layer 0.	

ER2 – MOSAIX variants

144 power units, can be powered/tested independently

Per each RSU

- 12 different pixel variants to fine tune operational margins
 - 3 front-end circuit variation to improve S/N
 - 1 (antenna) to mitigate degradation with processing
 - 2 biasing variants, to reduce temperature sensititvity
- ▶ In addition \rightarrow different splits to increase operational margin

-	Baseline Biasing		RSU			-
	Small input (-40%), with diodes	Standard (Baseline), with diodes	Standard (Baseline)	Small Input and Longer VCASB transistor	Small Input (-40%) and Longer VCASB transistor, with diodes	Longer VCASB transistor, with diodes
	Standard (Baseline)	Small input (-40%)	Longer VCASB (+150%)	Small Input and Longer VCASB transistor	Small Input (-40%) and Longer VCASB transistor, with diodes	Longer VCASB transistor, with diodes

/CASB stor, odes

Biasing with Temperature Compensation

Qualification Model

At the half-layer level

Before integration, and after wire bonding and carbon foam gluing, individual electrical testing.

At the half-detector level

Thermal and aeroelastic assessment using the wind tunnel setup at the ALICE Mechanics Lab.

At the detector barrel level

Installation and final cooling strategy assessment (thermal & vibrational aspects) with QMs in the ALICE Cleanroom

L1 after carbon foam gluing