

ALICE Upgrades: introduction

Riunione INFN ALICE-Referees, 10 July 2025

Andrea Dainese (INFN Padova)

ALICE upgrades strategy

Keep/strengthen ALICE unique reach in particle identification

Timeline of future upgrade projects

FoCal recent highlights

Mechanical mock-up of FoCal-E cooling system

Temperature sensor

41.4 °C • Hinden Michael Michael Michael Michael Michael • Hinden Michael Michae

FoCal-H Prototype 3:

- Copper sheets with grooves (4mm pitch), as alternative to capillary tubes
 - Final readout system
 - Test-beams in September, October

Riunione ALICE-Referees, Roma, 10.07.2025

ALICE 3 detector

LoI: <u>CERN-LHCC-2022-009</u> SD: CERN-LHCC-2025-002

Novel detector concept

- Compact and lightweight all-silicon tracker
- Retractable vertex detector with $R_{\min} = 5 \text{ mm}$
- Extensive particle identification
- Large acceptance $|\eta| < 4$
- Superconducting solenoid, B=2T
- Continuous read-out and online processing

Scoping Document review by LHCC referees completed March 2025

- \rightarrow Unique and compelling programme recognised
- \rightarrow Intermediate scoping option w/o ECal recommended
- \rightarrow New SC magnet needed, ideally B=2T, + backup options

Unique ALICE 3 physics goals

Understanding thermalisation in the QGP

- direct access to charm diffusion: D-Dbar azimuthal correlations
- degree of thermalisation of beauty: high-precision beauty measurements
- → approach to chemical equilibrium: multi-charm hadrons
- Access to temperature as function of time
 - → high-precision di-electron mass spectra, p_T dependence, elliptic flow
- Fundamental aspects of the QCD phase transition
 - net-baryon and net-charm fluctuations
 - mechanism of chiral symmetry restoration in the QGP: di-electron mass spectrum
- Laboratory for hadron physics
 - → hadron-hadron interaction potentials
 - explore nature of exotic hadrons (e.g., tetraquarks, charm-nuclei)

Also summarised in Scoping Document

(CERN-LHCC-2025-002 p9) and endorsed in LHCC report: "ALICE 3 is a unique detector at the LHC in terms of having a low material budget, a few-micron pointing resolution, a large acceptance in eta, and hadron, electron and muon identification." "The **LHCC recognises** that the different scoping options presented would enable a compelling and unique heavy ion physics program in Run 5."

ALICE 3 & Community inputs to ESPP2026

- ALICE 3 supported and prioritised in several <u>community inputs</u> to European Strategy for Particle Physics 2026
 - NuPECC
 - French QCD Comm.
 - German Nuclear and Hadron Phys Comm.
 - Italian Heavy Ion Comm. & INFN CSN3
 - Polish input
 - Romanian input
 - US HI Community
 - ...

First item in the <u>document</u> from the CERN Heavy Ion Town Meeting

unique potential for progress on these and other fundamental questions, the town meeting concludes that **the top priority for quark matter research in Europe is to** <u>fully exploit the physics opportunities presented by nuclear beams throughout the</u> <u>entire HL-LHC program.</u>

With the upgrades planned for HL-LHC run 4 and run 5, all four major LHC experiments are well-positioned for heavy ion programs that will significantly advance our understanding of fundamental questions in the field and that complement each other. the The upgraded detectors will give access to the 3D structure, microscopic dynamics, and substructure of quark matter. This provides an optimized, multi-pronged approach for the most comprehensive characterization of the QCD high-temperature phase by the end of HL-LHC run 5. Specifically:

- ALICE 3 is a completely new dedicated high-energy nuclear physics experiment, based on innovative detector concepts, with particle identification and unprecedented pointing resolution over large acceptance in rapidity and transverse momentum. It offers unique opportunities to advance quark matter research in HL-LHC Run 5, in particular via measurements of electromagnetic radiation, heavy flavour, and particle correlations.
- The LHCb Upgrade2, motivated mainly by the LHCb flavor physics programme, will offer unique opportunities for quark matter research in run 5 at the HL-LHC, in particular with measurements of heavy-flavour and the initial stages in collider mode at forward rapidity and in fixed-target mode.
- The **Phase-2 CMS and ATLAS** feature increased pseudorapidity coverage, highrate capability and particle identification. They will significantly advance quark matter research by precisely characterizing high-momentum transfer and photonuclear processes that require high statistics.

Key messages on Detector R&D

- Detector R&D remains a high priority and adequate investments have to be made, also for detectors beyond colliders
- DRD Collaborations successfully established, however, more solid funding support needs to be secured
- Significant technological limitations and challenges to overcome for future projects;

Indico page

Summary talk

Detectors plenary

Hot and dense QCD plenary

Ongoing upgrades also provide technology demonstrators

Key requirements (Eras 1 and 2, #70):												
	ITS3	ALICE 3 VTX	ALICE 3 TRK	ePIC	FCC-ee							
Single-point res. (μm)	5	2.5	10	5	3							
Time res. (ns RMS)	2000	100	100	2000	20							
In-pixel hit rate (Hz)	54	96	42		few 100							
Fake-hit rate (/pixel/event)	10^{-7}	10^{-7}	10^{-7}									
Power cons. (mW/cm^2)	35	70	20	<40	50							
Hit density (MHz/cm ²)	8.5	96	0.6		200							
NIEL (1 MeV n _{eq} /cm ²)	$4 \cdot 10^{12}$	$1 \cdot 10^{16}$	$2 \cdot 10^{14}$	few 10 ¹²	1014 (/year)							
TID (Mrad)	0.3	300	5	few 0.1	10 (/year)							
Material budget (X_0 /layer)	0.09%	0.1%	1%	0.05%	~0.3%							
Pixel size (μ m)	20	10	50	20	15-20							

Key technology: **MAPS** – monolithic active pixel sensors

New baseline layout: v2-2T

- Cost (CORE): 145 MCHF (-15% compared to version with ECal)
- Impact on specific aspects of the physics programme: photon and jet-based measurements
- Unique measurements based on heavy-flavour and thermal dielectrons not impacted

ALICE 3 timeline

	2023		20	24		2	025	,		20	26		1	2027			202	28		20)29			20	30			203	1			203	2		2	033			2	034			1	2035	;
				Run	3												LS	3													Run	4									1	LS4			
	Q1 Q2 Q3	Q4	Q1 Q2	Q3 (Q4 Q1	1 Q2	2 Q3	Q4	Q1	Q2	Q3	Q4 0	1 0	Q2 Q3	Q4	Q1	Q2	Q3 Q	4 Q	1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (23 (Q4	Q1 (Q2	Q3 Q	4 Q	1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q	1 Q2	2 Q3	Q4
ALICE 3	Detecto scoping WGs kick	g,	R&	ectio D, co						1.00	R&			s, en totyp		eere	d					8	Cor	nstr	ucti	ion										genc miss		nd					atio		

2022: Letter of Intent reviewed by LHCC \rightarrow very strong support

2023 – 2025: detector scoping, resource planning, sensors selection, small-scale prototypes

2026 – 2027: large-scale engineered prototypes \rightarrow Technical Design Reports

- 2028 2031: construction and assembly
- 2032 2033: contingency and pre-commissioning

2034 – 2035: Long Shutdown 4 - installation and commissioning

2036 – 2041: physics campaign, Pb-Pb ~35 nb⁻¹, pp ~ 18 fb⁻¹

ALICE 3 coordination team

Subsystem WGs:

- Inner Tracker: **G. Contin** (Trieste), **F. Reidt** (CERN)
- Outer Tracker: H. Büsching (Frankfurt), L. Fabbietti (Munich), A. Maire (Strasbourg)
- Forward Conversion Tracker: K. Reygers (Heidelberg)
- TOF Detector: S. Bufalino (Torino), M. Colocci (Bologna), A. Rivetti (Torino)
- RICH Detector: G. Volpe (Bari)
- MID: A. Ortiz (Mexico City)
- Data flow and online processing: V. Barroso (CERN), P. Hristov (CERN), T. Kollegger (Frankfurt)

Contacts for general items and other activities:

- General infrastructure, integration: TC W. Riegler, A. Tauro, C. Gargiulo, E. Laudi (CERN)
- Detector readout, links: EC A. Kluge (CERN)
- Forward Detectors: J. Otwinowski (Krakow)

Simulation and Physics Studies WGs

• Simulation and Performance: **N. Jacazio** (UniPO)

Interests of national groups and organisation

Experiment subsystems	National groups
Inner Tracker	CERN, China, Czech Republic, Italy, Nether-
	lands, Norway, Ukraine
Outer Tracker	Austria, Finland, France, Germany, Japan,
	South Korea, Sweden, UK, US
Forward Conversion Tracker	Germany
TOF Detector	Brazil, China, India, Italy, Japan, Nether-
	lands, Romania, South Africa
RICH Detector	Bulgaria, Hungary, India, Italy, Malta, Mex-
	ico, Poland
Muon Identification Detector	Czech Republic, Hungary, India, Mexico, US
Data flow and online processing	CERN, Germany, Romania
Detector readout, links, clock distribution	CERN, Hungary, Slovakia, UK
Forward Detectors	Denmark, Mexico, Poland
Superconducting magnet design	Brazil, CERN, Italy

• New institutes from: Italy (Pisa, LNGS), China, Japan, India, Poland, Bangladesh

- Additional participations under discussion
- Institutes interested in each subsystem are organising the activities (e.g. Work Packages towards TDR goals) and preparing the formation of Detector Projects
 - \rightarrow Angelo Rivetti (INFN To) endorsed by TOF institutes as Project Leader

ALICE 3 R&D

- R&D for sensors and subdetectors steadily progressing
- Several sensor test-beams this year: TOF, RICH, MID, Trackers (with ITS3)
- Regular updates and reviews at "ALICE 3" Days (February and May 2025)

ALICE 3 R&D in full swing (examples)

Riunione ALICE-Referees, Roma, 10.07.2025

R&D activities and test beams

Subsystem	Ongoing activities (2025)	Prototype tests with beam
SC Magnet	 Initial design in view of CDR Contacts/tests with SC cable vendors (Furukawa-BR, ICAS-IT, Wuxi-Toly-CN) for production of aluminum-coextruded Nb-Ti/Cu cable 	
Inner Tracker	 Preparation of laboratory setups for highly-irradiated pixel test structures at temperatures ~ -20 °C Sensor layout studies to achieve the 10µm pixel pitch for the Vertex Detector Feasibility study of ultra-lightweight Middle Layers Vertex Detector mechanics and vacuum laboratory tests Start of detailed mechanical design of ML barrel and discs 	 Test of highly-irradiated pixel test structures and building of sub-zero test-beam setups (up to 1 week per month, with ITS3) New Analogue Pixel Test Structure (APTS) optimizations in ITS3 ER2 (Q1 2026)
Outer Tracker	 Mechanical prototype for a barrel "sector" and studies for disks support structure Module design and industrialisation Wafer mass test protocol Sensor specs, design and simulation of very front-end (grouping) and of readout logic (asynchronous) Preparation of small test-structures characterization 	 Small test structures SPARC + APTS "large pitches" in ITS3 ER2 (Q1 2026)

R&D activities and test beams

Subsystem

TOF

Ongoing activities (2025)

Prototype tests with beam

- Time resolution of irradiated CMOS-LGAD sensors
- Time resol. of thinned CMOS-LGAD sensors (down to 15µm)

Characterization of SiPMs for timing with digital acquisition system and cooling at -40 °C

INFN

Beam tests at CERN PS

- Irradiated CMOS-LGADs (July)
- New CMOS-LGAD sensors with reduced thickness (October)
- SiPM with digital R/O and cooling (April)

	RICH	 Finalize setup for measuring aerogel refractive index, characterization of focusing aerogel tiles Study of the prototype interposer and cooling system SiPM irradiation and Dark Count Rate characterization with cooling and annealing Construction of module mock-up for installation test 	 Beam tests at CERN PS Gaseous radiator for el PID (July) New frontend prototype ALCORv2, enlarged photon sensor acceptance, irradiated SiPMs (October)
_	MID	 Construction of a 1x1 m² scintillator-based prototype Design and construction of the first version of the Frontend Card (FEC) with 32 channels 	 Beam tests at CERN PS Scintillator-based chamber vs MWPC, CAEN readout electronics vs custom made FEC (August)
		New Frontend Electronics P&D (leveraging EIT EEE upgrade for	 Scintillator radiation tests in ALICE

- New Frontend Electronics R&D (leveraging FIT FEE upgrade for Run 4)
- Scintillator radiation tests in ALICE cavern at P2

FD

Summary

- ALICE 3 recognised by LHCC as "a unique detector at the LHC", which "enables a compelling and unique HI physics programme in Run 5"
- Strong community support and visibility within Eu Strategy process
- v2-2T, w/o ECal, but with full field and acceptance, is now the baseline
 - CORE cost 145.3 MCHF bulk investment 2028-2032
 - \circ Target contributions per FA \rightarrow ongoing discussions between ALICE National Contact Physicists and FAs
- R&D in full swing: design, prototyping, test beams
 - First design / technology choices in the coming year
 - Crucial to continue supporting R&D in this phase

Additional material

Riunione ALICE-Referees, Roma, 10.07.2025

Superconducting magnet: design plans

- Brazilian Center for Research in Energy and Materials (CNPEM) and University of Sao Paulo (USP) intend to lead the magnet project, from design to construction
 - In collaboration with ALICE Techn. Coord., CERN EP R&D Magnet group, and INFN Genova
- CNPEM in contact with Furukawa Brazil to resume SC cable production
- Magnet design activities are starting:

Ext. radius 1.30 m

Int. radius

1.25 m

NbTl/Cu Rutherford Cable ... Nickel-doped Aluminum Jacket Conductor Insulation ...

Superconducting cable: procurement options

Furukawa Electric (Brazil)

Baseline: Aluminium-cladded Nb-Ti conductor

Fallback option: Copper-cladded Nb-Ti conductor (Luvata, US) Production can be re-established

CERN R&D program with ICAS (Italy)

Plan to establish production chain

Wuxi-Toly (China)

EMuS cable samples under test

EMuS conductor sample

Superconducting magnet: schedule

- SC magnet planning review on 18 June: \rightarrow Revised schedule
 - **1.5 years** contingency
 - Review panel considers project feasible, provided that the outline workplan begins in Jan 2026 without delays

LHCC report: v2-2T becomes the goal

From LHCC minutes:

- All scoping options enable compelling and unique programme
 - Impact of ECal descoping limited to some physics areas
 - Stronger impact for acceptance decrease
- LHCC recognises that a new SC magnet is needed: ideally 2T

CORE cost of v2-2T: 145.3 MCHF

Target contributions per FA: refer to discussions between NCPs and FAs

System	Technology	V2-2TCost (MCHF)
Inner Tracker	MAPS	13.7
Outer Tracker	MAPS	27.8
TOF	Monolithic LGADs	18.0
	Hybrid LGADs	+13.4
RICH	Aerogel, SiPMs	24.2
MID	Iron absorber, scintillators, SiPMs	3.6
FD	scintillators, PMTs	1.1
Magnet system	Superconducting solenoid	24.7
Online computing	CPU and GPU nodes, disk buffer	10.3
TOTAL		123.4
Common items	Beampipe, infrastructure, services	+11.1
	TC design and engineering	+10.9
FCT	MAPS, dedicated dipole magnet	+3.45

Spending profiles (v2-2T)

- Construction spending starts in 2028, after TDRs approval
- Peak in 2029-32, depending on the total construction time
- Lower yearly cost peaks with new schedule (LS4 shift)

Software geometry and tracking

All subsystems implemented in ALICE O² software geometry

Minor effect of layout changes on tracking performance (momentum resolution)

Layout update: p_T resolution ~unaffected

- Smaller and shorter OT endcaps don't worsen p_T resolution at $|\eta|>2.5$
- 10-20% worsening at 1.4<|η|<1.6

• PID coverage is preserved

Detailed schedules example (OT)

			202	3		2	024	4		20	25			202	6		2	202	7			20	28			20	29			203	0		2	031			203	2		203	3		20	34
						Run 3								LS3																	R	un	4								I	LS4		
		Q1	Q2 (Q3 C	4 Q	1 Q	2 Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2 C	3 Q4	4 Q1	ιc	Q2 C	13 Q	4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (Q3 Q	4 0	Q1 Q	2 Q3	Q4	Q1	qz q	3 Q4	Q1	Q2	Q3 Q	4 Q:	L Q2	Q3 Q4
TPSCo	65m Engine	eri	ng Ru	ins			E	R2 (I	TS3)			ER3	3 (IT:	53)	EF	84			EF	۲5					ER6	5																		
	Chip					D	esig	'n	P	oto	typi	ng		Prote	otyp	ir ED	R	Pre-	prod	I. I	PRR			Pr	odu	ictic	n												2	,	On-			
Ŀ	Module					D	esig	'n	P	oto	typi	ng		Prote	otyp	ing	E	DR F	Pre-p	oro	d. I	PRR					Pro	du	ction	n										÷,	On-surface		8	5
Tracker	Mechanics					D	esig	'n	P	oto	typi	1000		Prote	otyp	ing	E	DR F	Pre-p	oro	d. I	PRR				Pro	ducti	on															mm	stall
er Tr	Services									De	sign		TDR				Ρ	roto	otypi	ng	(L				Pro	ocui	reme	nt								Cor	ting	ency			commissioning		commissioning	Installation
Oute	Detector																								Ass	eml	oly te	ests		Det	ecto	or a	sser	nbly					legi		mis		onin	n and
0																																							Integration		sioni		04	đ
																												_											_		ng			

ALICE

Summary of impact of scoping options

Measurement	Layout v2-2T	Layout v2-1T
ALPs searches in $\gamma\gamma \rightarrow \gamma\gamma$	strongly limited	$1 (m_a < 2 \text{ GeV}/c^2, 1/\Lambda_a > 0.2 \text{ TeV}^{-1})$
$\chi_{c1,2} ightarrow J\psi\gamma$	measure	ement limited to $p_{\rm T} > 4 {\rm GeV}/c$
		minor additional impact
γ -jet correlations	limited	improvement w.r.t. ALICE 2
$\chi_{c1}(3872) \rightarrow J\psi \pi \pi$	not affected	minor impact
Ξ_{cc} yield	not affected	minor impact
Ξ_{cc} rapidity dependence	not affected	large impact
\mathbf{B}^+ yield and flow	not affected	moderate impact at low and high $p_{\rm T}$
Λ_c and Λ_b flow	not affected	large impact at $2 < y < 4$
$D^0 - \overline{D^0}$ vs. $\Delta \varphi$	not affected	minor impact
D–D* vs. k^*	not affected	significant impact
Dielectrons	not affected	can exploit full integrated luminosity

 \rightarrow B = 2 T is the preferred field strength

 \rightarrow B = 1 T not the ideal option, but still enables a strong programme

 \rightarrow an intermediate value of magnetic field (e.g. 1.5T), can be considered as well

Services and installation

- Main guideline: optimise installation sequence and add flexibility to the LS4 schedule
- Integration scheme with alternating services on the two sides
- Enables modular and independent installation of: Outer Tracker endcaps, RICH and TOF barrels, forward RICH and forward TOF endcaps
- In case of delay, any of these **components can be installed during a YETS, without affecting the LHC schedule**

Magnet

Riunione ALICE-Referees, Roma, 10.07.2025

LS4 schedule

Dismantling of ALICE 2, installation of magnet and services, and of ALICE 3 fit in LS4

	$\rightarrow \equiv$	\geq	2033	2034	2035
Begin date	End date	Dura	Dec Jan Feb Mar Apr May	Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug S	ep Oct Nov Dec Jan Feb Mar Apr May Jun J
12/6/32	6/22/33	143		Uninstall ALICE 2	
7/1/33	4/6/34	200		Install services	
7/1/33	8/18/33	35		Install absorber support structure	
8/19/33	10/6/33	35		Install absorber elements	
10/7/33	2/9/34	90		Install and commissioning superconducti	ng magnet
10/7/33	10/20/33	10		Magnet installation	
10/21/33	12/8/33	35		Magnet cool-down	
10/21/33	11/24/33	25		FCT dipole temporary installation	
12/9/33	1/5/34	20		Magnet commissioning	
1/6/34	1/19/34	10		📩 Magnet field mapping (solenoid + FCT dipole)
1/20/34	2/9/34	15		Magnet warm-up at 100K	
2/10/34	3/2/34	15		Install spaceframe	
3/3/34	5/11/34	50	0	Install ECal detector	(-2 months for layout v2)
3/3/34	4/27/34	40		Install MID detector	· · · · · · · · · · · · · · · · · · ·
5/12/34	6/29/34	35		h Install RICH	& TOF detectors
6/30/34	8/24/34	40			Install central beampipe & vertex detector
8/25/34	10/12/34	35			h Install outer tracker
10/13/34	11/30/34	35			Install middle layers & disks
12/1/34	12/14/34	10			Install outer tracker disks
12/15/34	12/28/34	10			Install RICH & TOF endcaps
12/29/34	1/25/35	20			Install FCT dipole and detector
1/26/35	3/22/35	40			Commissioning

Layout v2-1T: Λ_c elliptic flow

- Measurement at central rapidity |y|<3 remains precise also with solenoid 1 T
- Measurement at forward rapidity 3

Layout v2-1T: multicharm baryon Ξ_{cc}

- Significance ~30% lower without dipoles, at 2-6 GeV/c
- 1T quite similar to 2T: a bit higher at low p_T, a bit lower at intermediate p_T
- Larger background due to lower p_T resolution partly compensated by larger acceptance for soft pions

Layout v2-1T: D⁰ and D-D correlations

- D⁰ meson significance:
 - no impact of field value/configuration at |y|<3, because S/B >>1
 - large reduction of S/B and significance in 3<|y|<4
 - Effect propagated to D-Dbar azimuthal correlations:
 - minor impact on precision of near-side and away-side peak yields and widths
 - e.g.: away-side width precision is
 4.4% with 1T solenoid-only,
 4.0% with 2T solenoid-only and
 3.8% with 2T solenoid+dipoles

Layout v2-1T: Λ_c significance and flow

stimated

- Λ_{c} meson significance:
 - no impact of field value/configuration at |y|<2, because S/B >>1
 - large reduction of S/B and significance in 3<|y|<4 without dipoles, but small difference between 2T and 1T
 - Λ_{c} Elliptic flow:
 - measurement at |y|<3 remains very precise also with solenoid only and with 1 T
 - measurement at 3<|y|<4 degraded without dipoles, especially with 1T

ECal descoping

Physics loss without ECal:

- Strong limitation in performance for BSM searches in $\gamma\gamma \rightarrow \gamma\gamma$
- $\chi_{c1,2}$ measurement starts at p_T 4-5 GeV/*c* instead of 1-2 GeV/*c*
- No possibility of full-jet and gamma-jet measurements

Riunione ALICE-Referees, Roma, 10.07.2025

ECal: gamma-jet

- ECal can measure photons with x10 larger acceptance than ALICE 2 (EMCal)
- Photon can be correlated with charged-jets in |eta|<4 (exploiting ALICE 3 tracker acceptance)
- Uniqueness:
 - > wrt ATLAS/CMS: low p_⊤
 - p_{Tjet}>10 GeV in ALICE 3 (same ALICE), vs 50 in ATLAS/CMS
 - p_{Tgamma} >10-20 GeV in ALICE 3, vs 50 in ATLAS/CMS
 - wrt ALICE 2: x10 larger acceptance for the photon (EMCal vs ECal), x2 larger L_{int}, ch. jets in |eta|<3.6 vs |eta|<0.5
- Projections for recoil jet R_{AA} and I_{AA}

let (hadrons

OGP

Significance with 35 nb⁻¹

р_т (GeV/*c*)

10F

Δ

p_ (GeV/c)

Superconducting 2T Magnet

Aluminum co-extruded cable

EMuS conductor sample

- Similar design as all existing detector solenoids
- Several options followed-up for cable procurement, including a dedicated CERN R&D programme
- Brazilian Centre for Research on Energy and Materials (CNPEM) pursuing plan to design and build the magnet
- Design activity starting up

R&D for Vertex Detector

• Design and prototyping of thin carbon-fibre cold plate for CO₂-based cooling of movable petals

 Outgassing studies to qualify materials for secondary vacuum (~10⁻⁹ mbar)

R&D for silicon Time Of Flight

- Time resolution requirement: $\sigma_{t} \sim 20 \text{ ps}$
- Main R&D direction: Novel monolithic CMOS-LGAD with gain layer
 - MadPix sensor with 48 μ m thickness gives ~75 ps
 - Upcoming thinner versions expected to reach 20 ps

ALICE

ITS3: towards final components

300 mm wafer hinned ≤ 50 um

Pixel sensor Engineering Run 1

- Monolithic Stitched Sensor (MOSS): 259x14 mm² x50 μm
- Extensively tested and validated

Preparation of Engineering Run 2, for final sensor (MOSAIX)

- Stitched in both directions: $259 \times 105 \text{ mm}^2 \times 50 \mu \text{m}$
- Final verification ongoing; expected delivery after summer

Engineering Run 1 wafer with various dies

Monolithic Stitched Sensor (MOSS)

Engineering Model 3

- All three layers, with dummy sensors
- Mechanical support structure (carbon foam longerons and spacers)
- FPCs integrated on both sides

ITS3 recent highlights

MOSAIX left end

power

simulation

readout

ITS3 prototype sensor "MOSAIX"

- full-size, fully-functional
- final dimensions and interfaces

ER2 submission for "MOSAIX"

- final simulation checks ongoing, including detailed power dissipation
- tape out this month → sensors expected back in fall

MOSAIX testing preparation

- Carrier cards, wafer-probe cards, test system (DAQ) produced
- Firm- and software development ready for first tests

wirebonds

• FPGA-based hardware emulation platform developed

MOSAIX test setup

MOSAIX

emulator

8154 15.007 007/0 1 812 007 007 007

