

Attività 2025 Richieste 2026

ALICE-HMPID (High Momentum Particle Identification) detector

09/07/2025

G. Volpe University & INFN, Bari

ALICE-HMPID

Contributing institutes:

- 80% INFN Bari
 - G. Volpe PL and G. De Cataldo deputy PL
- 20% CERN team

Participating institutes with in-kind contributions:

- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Lavana, Cuba
- Wigner Inst. Budapest, Hungary.
- Dep. of Physics and CIT dept. of the University of Malta, Msida, Malta;
- The Malta College of Arts, Science and Technology (MCAST), Malta.

7 RICH (Ring Imaging CHerenkov) modules

- ~1.3 x1.3 m2 for a total CsI active area of ~11 m^2
- (@ 3σ) π/k identification in 1-3 GeV/c and protons in 1.5-5 GeV/c momentum intervals;
- |η|<0.5

Status

No activities on the detector hardware are ongoing or foreseen

- MWPCs flushed with CH₄ and C₆F₁₄ radiator vessels with no leaks filled-up.
- The High Voltage Channel stability is very good.

- The readout is in general very stable.
 - Event readout rate up to \cong 21 kHz (in pp collisions)
- HMPID has so far participated in almost all the good physics runs

HMP Busy Time per DDL

HMPID in O²

Simulation and reconstruction

- HMPID geometry and hits creation \rightarrow implemented and committed
 - Implement aluminium absorbers in the detector geometry ightarrow implemented and committed
- Digitization from hits \rightarrow implemented and committed
- Digit from raw data \rightarrow implemented and committed
- Raw data simulation \rightarrow implemented and committed
- Clusterization \rightarrow implemented and committed
- Track matching and Cherenkov angle reconstruction \rightarrow implemented and committed
- AO2D → implemented and committed

Calibration

- calibration procedure for HMPID similar to that used in RUN1 and RUN2
 - Pedestal calculation and CCDB writing workflow: implemented and committed
 - Chamber gain and refractive index calibration and CCDB writing workflow: implemented and committed

Quality Control

- Sync QC: raw data task \rightarrow implemented and committed
- Quality raw data checker \rightarrow implemented and committed
- Async QC: clusters and matching infos \rightarrow implemented and committed

HMPID performance in Run 3

Most probable value (MPV) of the MIP charge distributions for each chamber and HV sector

Lower gain in RUN 3, to be investigated!

22222222222

High Voltage Sector 5

2010⁻ 2011

Gas Gain for each chamber and HV sector

HMPID performance in Run 3

Number of photons for each chamber and photocathode (PC)

HMPID performance in Run 3

Absorbtion cross section measurement

Two aluminium absorbers were installed on front to HMPID chamber 2 and 4 for anti-deuteron inelastic absorbtion cross section measurements

Implemented in the detector geometry in O²

Development of software tools for analysis of anti-deuteron absorbtion cross section and pions, kaons, protons and light nuclei momentum spectra.

Next: extend the analysis of the absorbtion cross section also to pions, kaons and protons.

Milestone 2025: Implementazione strumenti software per le misure della sezione d'urto di assorbimento di pioni, kaoni e protoni \rightarrow 60 % ⁹

Absorbtion cross section measurement

- Δr is the distance between the reconstructed MIP track in HMPID and the extrapolated track from the ALICE tracking system.
- The number of surviving (anti-)deuterons will be extracted from the fitting procedure of the Δr distribution using the MC template to discriminate the signal from the background.

10

Budget request (M&OB) for 2025

The HMPID will be brought at the surface and dismounted during 2026;

As from 2023 till 2025, the maintenance and interventions will be reduced at the minimum;

The total for 2026 is an estimate for the detector removal and dismounting;

The expected increase of A08 areas is just an estimate for the infrastructures in the diamounting area.

A	В	С	D	E	F	G	н	1	J	к	L	М	N	0	Р	Q R	S
Budget	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 0	omments	
A01 Mechanics															(pmment from A01 till A11.3 : the HMPID will be	brought
A02 Gas Systems	25	15	10	15	15	15	15	5	5	10	10	5	5	5	0		
A03 Cooling					1												
Systems	4	4	4	4	4	4	4	2	2	4	4	1	1	1	0		
A04 FEE spares	6	1	1	1	1	1	1	1	1	0	0	0			0		
A05.1 Standard Electronics LV/HV	9.5	1	4	4	4	4	10	4	4	0	0	0			0		
AOE O Chandend	0.5	4	4	4	4	4	10		4	0					0		
Electronics Crates	2	1	1	1	1	1	1	1	1	о	о	0			0		
A05.3 Standard Electronics R/O modules																	
A06 Controls (DCS	2	1.5	1.5	15	15	1.5	1.5	1.5	1.5	0	0	0			0		
A07 Sub Datastar	3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.0	0	0	0			0		
A07 Sub-Detector																	
spares	50	25	20	25	05	05	25	20	15	10	10	E	5		10		
AUG Areas	50	35	30	25	25	25	23	20	15	10	10	5	5	5	10		
Communications	8	8	8	8	8	8	8	8	8	8	5	5	5	5	0		
A10 Store Items	8	8	8	8	8	8	8	8	8	8	5	5	5	5	5		
A11.1 Technical Manpower @ CERN: Industrial Support	10	5	10	5	5	5	5	5	5	5	1	2	2	2	5 (Domment from raw 1 to 15: the HMPID will be bro	ought at f
A11.3 Technical Manpower @ CERN from Collaborating																	
Institutes	20	10	15	10	10	10	10	10	10	5	15	2	2	2	5		
Total	144.5	92.5	92.5	82.5	82.5	82.5	88.5	65.5	60.5	50	50	25	25	25	25		
A11.2 Technical Manpower @ CERN from Collaborating Institutes (in man-	M &	OB	= 20) kC	HF (INF	N) +	5 k	CHF	(CE	RN)					

Al

2026

10

25

ICE

Summary

- The HMPID detector is fully operational
 - Software in O² (simulation, reconstruction, quality control) completed.
 - Stable data taking.
 - Lower chamber gain observed in Run 3 w.r.t. Run2 \rightarrow investigating
 - A huge amount of pp and Pb-Pb data have been collected so far
 - Performance studies have started. Physics measurements will come soon (light nuclei p_T spectra, anti-deuteron absorption cross section).
- Milestone 2025:
 - Implementazione strumenti software per le misure della sezione d'urto di assorbimento di pioni, kaoni e protoni → 60 %
 - Partecipazione con alta efficienza alla presa dati durante tutti I periodi di fascio → so far participation in all the run periods: 50 %
- Milestone 2026:
 - Partecipazione con alta efficienza alla presa dati durante tutti I periodi di fascio
- After contributing to LHC Runs 1, 2, and 3, the detector will be removed from the ALICE apparatus at the end of Run 3, scheduled for next year.