

Cracks in the Standard Model? A fresh look at the B anomalies

Mauro Valli

INFN Rome

The Standard Model

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} t$$
$$d \quad s \quad b$$

Why?

Effective Field Theories & Flavour

Das

ChatGPT

\$

An anomaly refers to something that deviates from what is standard, normal, or expected. It can be a deviation from a pattern, behavior, or occurrence that stands out from the typical or anticipated norm. Anomalies can occur in various contexts, such as in data analysis, scientific observations, natural phenomena, or even in human behavior.

ARE THESE (INTERESTING) ANOMALIES?... b----

1.27 GeV

charm

104 MeV

S

2/3

1/3

2.4 MeV

up

4.8 MeV

2/3

1/3

 $\overline{
u}_\ell$

С

W

171.2 GeV

top

4.2 GeV

Semileptonic Rare B decays

Flavor Changing Neutral Currents (FCNCs)

- only @ loop level in the SM
- GIM suppressed

Semileptonic Rare B decays

 R_K low- q^2 R_K central- q^2 R_{K^*} low- q^2 R_{K^*} central- q^2

... THERE WERE EXCITING ANOMALIES ...

SHOULD WE (STILL) GET EXCITED?

REUDE: Anatomy of $B \longrightarrow K^{(*)} \ell^+ \ell^-$

$$H_{eff}^{\Delta B=1} = \frac{H_{eff}^{had}}{H_{eff}^{sl+\gamma}} + \frac{H_{eff}^{sl+\gamma}}{H_{eff}^{sl+\gamma}}$$

$$H_{eff}^{had} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left[C_1 P_1^p + C_2 P_2^p + \sum_{i=3,\dots,6} C_i P_i + C_{8g} Q_{8g} \right]$$

$$H_{eff}^{sl+\gamma} = \frac{4G_F}{\sqrt{2}} \lambda_t \left[C_7^{(\prime)} Q_{7\gamma}^{(\prime)} + C_9^{(\prime)} Q_{9V}^{(\prime)} + C_{10}^{(\prime)} Q_{10A}^{(\prime)} + C_S^{(\prime)} Q_S^{(\prime)} + C_P^{(\prime)} Q_P^{(\prime)} \right]$$

Process energy scale is $\mathcal{O}(m_b) \ll \mathcal{O}(v_{\rm EW}) \longrightarrow$ EFT à la Fermi SM matching & renormalization group effects known @ NNLO.

$$P_1^p = (\bar{s}_L \gamma_\mu T^a p_L) (\bar{p}_L \gamma^\mu T^a b_L)$$

$$P_2^p = (\bar{s}_L \gamma_\mu p_L) (\bar{p}_L \gamma^\mu b_L)$$

$$P_3 = (\bar{s}_L \gamma_\mu b_L) \sum_q (\bar{q} \gamma^\mu q)$$

$$P_4 = (\bar{s}_L \gamma_\mu T^a b_L) \sum_q (\bar{q} \gamma^\mu T^a q)$$

$$P_5 = (\bar{s}_L \gamma_\mu 1 \gamma_{\mu 2} \gamma_{\mu 3} b_L) \sum_q (\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q)$$

$$P_6 = (\bar{s}_L \gamma_\mu 1 \gamma_{\mu 2} \gamma_{\mu 3} T^a b_L) \sum_q (\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^a q)$$

 P_1^p

=

$$Q_{7\gamma} = \frac{e}{16\pi^2} \hat{m}_b \bar{s} \sigma_{\mu\nu} P_R F^{\mu\nu} b$$

$$Q_{8g} = \frac{\gamma_s}{16\pi^2} \hat{m}_b \bar{s} \sigma_{\mu\nu} P_R G^{\mu\nu} b$$

$$Q_{9V} = \frac{\alpha_{em}}{4\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell)$$

$$Q_{10A} = \frac{\alpha_{em}}{4\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma^5 \ell)$$

$$Q_S = \frac{\alpha_{em}}{4\pi} \frac{\hat{m}_b}{m_W} (\bar{s} P_R b) (\bar{\ell} \ell)$$

$$Q_P = \frac{\alpha_{em}}{4\pi} \frac{\hat{m}_b}{m_W} (\bar{s} P_R b) (\bar{\ell} \gamma^5 \ell)$$

INTERLUDE: ANATOMY OF $B \longrightarrow K^{(*)} \ell^+ \ell^-$

$$\frac{H_{eff}^{\Delta B=1} = H_{eff}^{hada} + H_{eff}^{sl+\gamma}}{H_{eff}^{bhdf}} = H_{eff}^{hada} + H_{eff}^{sl+\gamma}} = \frac{4G_F}{p_{\sqrt{2}}} \sum_{p=u,c} \sum_{p=u,c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$$

Low-energy physics from two sets of contributions:

$$\mathcal{A} \sim \langle \ell^+ \ell^- | J_{\text{lep}} | 0 \rangle \langle V(P) | J_{had} | B \rangle$$

 $\begin{array}{c} \textbf{\#1} \\ (q^{2}) \sim \mathcal{A}_{\lambda,\mu} \end{array} & \text{Matrix elements of semi-leptonic \& EM dipole} \\ \text{operators}_{1,\mu} \left\{ \begin{array}{c} \mathcal{A}_{\mu} \\ \mathcal{A}_{\mu} \\ \mathcal{A}_{\mu} \end{array} \right\} \\ \mathcal{A}_{\mu} \\ \mathcal{A}_{\mu} \end{array} \\ \mathcal{A}_{\mu} \\ \mathcal{A}_{\mu} \\ \mathcal{A}_{\mu} \end{array} \\ \mathcal{A}_{\mu} \\ \mathcal{A}_$

INTERLUDE: ANATOMY OF $B \rightarrow K^{(*)} \ell^+ \ell^-$

$$p=u,c \qquad i=3,...,6 \qquad \qquad I=3,..., I=3,...,I=3$$

$$\mathcal{H}_{eff}^{sl+\gamma} = \frac{4G_F}{\sqrt{2}\ell} \lambda_t \left[C_7^{(\prime)} Q_{7\gamma}^{(\prime)} + C_9^{(\prime)} Q_{9V}^{(\prime)} + C_{10}^{(\prime)} Q_{10A}^{(\prime)} + C_S^{(\prime)} Q_S^{(\prime)} + C_P^{(\prime)} Q_P^{(\prime)} \right] \\ \mathcal{A} \sim \sqrt{2\ell} \ell + \ell \left[J_{\text{lep}} \left| 0 \right\rangle \left\langle V(P) \right| J_{had} \left| B \right\rangle \right]$$

Low-energy physics from two sets of contributions:

$$\epsilon_{\lambda,\mu} \int d^4x \, e^{iqx} \langle V(P) | T\{J^{\mu,e.m.}_{had}(x) \mathcal{H}^{eff}_{had}(0)\} | B$$

Matrix elements of four-quark & QCD dipole operators —> non-local hadronic correlators, h_{λ}

$$P_{3} = (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q)$$

$$P_{4} = (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q)$$

$$P_{5} = (\bar{s}_{L}\gamma_{\mu}1\gamma_{\mu2}\gamma_{\mu3}b_{L})\sum_{q}(\bar{q}\gamma^{\mu})$$

$$\frac{\bar{P}_{5}}{\bar{P}_{6}} \frac{(\bar{s}_{L}\gamma_{\mu}T^{a}p_{L})(\bar{p}_{L}\gamma^{\mu}T^{a}b_{L})}{(\bar{s}_{L}\gamma_{\mu}p_{L})(\bar{p}_{L}\gamma^{\mu}d_{L})^{\mu2}\gamma_{\mu3}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu})$$

$$= (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q)$$

$$= (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q)$$

$$= (\bar{s}_{L}\gamma_{\mu}1\gamma_{\mu2}\gamma_{\mu3}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}\gamma^{\mu}\gamma^{\mu}\gamma^{\mu}q)$$

$$= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}f^{b}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}\gamma^{\mu}\gamma^{\mu}\gamma^{\mu}q)$$

$$= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}f^{b}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}\gamma^{\mu}\gamma^{\mu}\gamma^{\mu}q)$$

$$Q_{7\gamma} = \frac{\alpha_{em}}{16\pi^{2}}m_{b}\bar{s}\sigma_{\mu}\gamma^{\mu}q_{R}F^{\mu\nu}b$$

$$Q_{8g} = 10A_{s}}{m_{b}\bar{s}\sigma_{\mu}}A_{R}G^{\mu\nu}b_{\mu}P_{L}$$

$$Q_{9V} = Q_{4\pi}^{\alpha_{em}}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}m_{W}^{b})(\bar{\ell})$$

$$Q_{9V} = Q_{4\pi}^{\alpha_{em}}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}m_{W}^{b})(\bar{\ell})$$

$$Q_{9V} = (\bar{\alpha}_{em}}\frac{m_{b}}{m_{W}}(\bar{s}P_{R}b)(\bar{\ell}\gamma^{5}\ell)$$

 P_1^p

 P_2^p

 P_3

 P_4

 P_5

 P_6

INTERLUDE: ANATOMY OF $B \longrightarrow K^{(*)} \ell^+ \ell^-$

Building blocks are helicity amplitudes, which generally read as:

Short-distance order-of-magnitude: $C_{SM,7} \sim -1/3$, $C_{SM,9} \sim 4$, $C_{SM,10} \sim -4$

The main sources of uncertainties stem from form factors & long-distance effects encoded in such hadronic correlators.

Form Factors for $B \longrightarrow V(P) \ell^+\ell^-$

- QCD Light-Cone Sum Rules (LCSR) -> feasible @ low q², not first-principle

- Lattice QCD -> feasible @ high q^2 , difficulties with unstable mesons (e.g., K*)

KNOWN UNKNOWNS IN $B \longrightarrow K^{(*)} \ell^+ \ell^-$

ESTIMATED IN JHEP 09 (2010) 089 ACCORDING TO:

j)

ii)

- Light-cone sum rules (LCSR)
- Single soft gluon approximation
- iii) Extrapolation to cc resonances

ANOMALIES IN $B \rightarrow K^* \mu \mu$?

$h_{0,\pm}(q^2) = \sum_{k=0,1,2} h_{0,\pm}^{(k)} \left(\frac{q^2}{\text{GeV}^2}\right)^k$

Phenomenological Model Driven (PMD)

Enforce outcome of LCSR + dispersion relations in the entire range of q^2

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

Descotes-Genon et al. 2013

$\begin{array}{l} \mbox{Phenomenological} \\ \mbox{Data Driven} \ (\mbox{PDD}) \end{array}$ Apply LCSR results only for $q^2 \lesssim \mbox{GeV}^2$

[JHEP 06 (2016) 116]

BANOMALIES: "EVIDENCE" FOR NEW PHYSICS

In 2022, this class $B \rightarrow MJ/\psi$ penguins has been re-estimated $\stackrel{s}{=} -> \operatorname{tiny} contribution!$ $\overline{9} \qquad [JHEP 09 (2022) 133]$

1) LCSR at $q^2 \leq 0$

- 2) z expansion w/ $B \rightarrow M J/\psi$ data
- 3) dispersive bounds based on cuts in q²

LHCb recently extracted non-local effects from data [PRL132 (2024) 13] using an ansatz based on the analytic structure in [JHEP 09 (2022) 133]

• Non-local function follows [JHEP 09 (2022) 133]

$$\mathcal{H}_{\lambda}(z) = \frac{1 - zz_{j/\psi}}{z - z_{j/\psi}} \frac{1 - zz_{\psi(2S)}}{z - z_{\psi(2S)}} \hat{\mathcal{H}}_{\lambda}(z), \qquad \hat{\mathcal{H}}_{\lambda}(z) = \phi_{\lambda}^{-1}(z) \sum_{k} a_{\lambda,k} z^{k}$$

TRUNCATION AT $\mathcal{O}(z^2)$ —> EVIDENCE FOR $C_{9,U}^{NP}$ AT 2 SIGMA LEVEL

EXPANDING AT NEXT ORDER – $\mathcal{O}(z^3)$ – AFFECTS INFERENCE OF $C_{9,U}^{NP}$

LHCb recently extracted non-local effects from data [PRL132 (2024) 13] using an ansatz based on the analytic structure in [JHEP 09 (2022) 133]

• Non-local function follows [JHEP 09 (2022) 133]

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z z_{J/\psi}}{z - z_{J/\psi}} \frac{1 - z z_{\psi(2S)}}{z - z_{\psi(2S)}} \hat{\mathcal{H}}_{\lambda}(z), \qquad \hat{\mathcal{H}}_{\lambda}(z) = \phi_{\lambda}^{-1}(z) \sum_{k} a_{\lambda,k} z^{k}$$

MOST IMPORTANTLY ... WHAT ABOUT THOSE ?

[see discussion in EPJC 83 (2023) 1]

Rescattering from intermediate on-shell hadronic states. These effects are NOT captured by analytic cuts solely in q². [*i.e., anomalous thresholds, see JHEP 07 (2024) 276*]

TRIANGLES & ANOMALOUS THRESHOLDS

Pheno estimate extrapolating Heavy Hadron ChiPT to region of low q^2 points to O(1%) effect at the amplitude level ... but it could be way larger!

Anomalous thresholds easily yield O(10%) effects (maybe even O(1)?)

- distortion of the analytic structure implies "new" dispersion relations
- $\bar{D}D, \bar{D}D^*, \bar{D}^*D^*, \bar{D}_sD_s, ext{etc.}$ challenging for pheno analyses

see JHEP 07 (2024) 276

BANOMALIES : A DATA DRIVEN APPROACH

$$\begin{aligned} & \text{Just Taylor-expand correlators } h_{\lambda} \text{ and fit } c d \notin f_{\lambda} \text{ to data!} \\ h_{-}(qh_{\perp}(q^{2}) = \frac{m_{b}}{8\pi^{2}m_{F}} \tilde{m}_{b}^{2})(q^{0})h_{\perp}^{(0)} V_{\perp} \tilde{V}_{\perp} \tilde{Q}^{2})(q^{2})(p_{\perp}^{2})(q^{2})(p_{\perp}^{2})(q^{2})(p_{\perp}^{2})(q^{2}$$

BANOMALIES : ~ 2 YEARS AGO

QCD ONLY

QCD ~ LEPTON UNIVERSAL NP

BANOMALIES: WHERE WE ARE!

QCD ONLY

BANOMALIES: "EVIDENCE" FOR NEW PHYSICS

BANOMALIES : WHERE TO GO

#[

TAME HADRONIC EFFECTS FROM FIRST PRINCIPLES

Charming penguins may be computed on the lattice at large q^2 via the HLT method — **PRD 108 (2023) 7** — see **C.Sachrajda @ BFA 2025**.

Extrapolation to low q² region requires generalization of current dispersive bounds. — see **PRD 111 (2025) 3** —

BANOMALIES : WHERE TO GO

#[

TAME HADRONIC EFFECTS FROM FIRST PRINCIPLES

Charming penguins may be computed on the lattice at large q^2 via the HLT method — **PRD 108 (2023) 7** — see **C.Sachrajda @ BFA 2025**.

Extrapolation to low q² region requires generalization of current dispersive bounds. — see **PRD 111 (2025) 3** —

#2

COLLECT MORE DATA, MEASURE NEW OBSERVABLES

Test ΔC_9 dependence on q² binning, polarization of final state, for different channels. - see **EPJC 84 (2024) 5** -

BANOMALIES : A 🌞 FUTURE

LHCb upgrade(s) will allow us to probe precisely the q² dependence in the angular analysis ...

-> pin down effects from hadronic physics

CMS & ATLAS are going to play a role as well!

Belle II is already delivering interesting results! A POSSIBLE NEW INTERESTING ANOMALY ...

Take Home

BACKUP

B ANOMALIES : P₅

2110.10126

EXTRACTION OF HADRONIC EFFECTS

2110.10126

Phenomenological Data Driven

$$h_{0,\pm}(q^2) = \sum_{k=0,1,2} h_{0,\pm}^{(k)} \left(\frac{q^2}{\text{GeV}^2}\right)^k$$

PROJECTIONS @ 50 fb⁻¹

(Hurth et al.`17 + Albrecht et al.`17)

Scaling LHCb stat errors roughly of 1/6

[arXiv:**1809.03789**]