

ALAN Active pLAsma for beNding

Consiglio di Laboratorio | Presentazione preventivi 2026 Laboratori Nazionali di Frascati 14 luglio 2025

Angelo Biagioni | LNF-INFN | CdL 14 July 2025

Angelo.Biagioni@Inf.infn.it

Guiding of charged particle beams in curved plasma discharge capillaries

PHYSICAL REVIEW LETTERS 132, 215001 (2024)

Title: ALAN (Active pLAsma for beNding)
Research area: Accelerators (Plasma accelerators)GuidingNational responsible(LNF): Angelo Biagioni
Local responsible(INFN-Milano): Andrea Renato RossiR. Pompili@, ^{1,*} M. P.
A. Del Dotto, ¹ M. T.
G. Parise, ³ D. PellegrPartecipants: LNF (Laboratori Nazionali di Frascati), INFN-Sezione di Milano
Total Budget: 195.000 € over a three-year periodMilanoBudget 2026: 60.000 €

Guiding of Charged Particle Beams in Curved Plasma-Discharge Capillaries

R. Pompili[©],^{1,*} M. P. Anania,¹ A. Biagioni,¹ M. Carillo,² E. Chiadroni,² A. Cianchi,^{3,4,5} G. Costa,¹ A. Curcio,¹ L. Crincoli,¹ A. Del Dotto,¹ M. Del Giorno,¹ F. Demurtas,³ A. Frazzitta,^{2,6} M. Galletti,^{3,4,5} A. Giribono,¹ V. Lollo,¹ M. Opromolla,¹ G. Parise,³ D. Pellegrini,¹ G. Di Pirro,¹ S. Romeo,¹ A. R. Rossi,⁶ G. J. Silvi,² L. Verra,¹ F. Villa,¹ A. Zigler,⁷ and M. Ferrario¹

Active pLAsma for beNding (ALAN)_Motivations

Why a plasma dipole?

- New proposal for plasma-based approach of compact, achromatic bending devices, paving the way for next-generation high-energy accelerators.
- Currently, in particle accelerators, the deflection of charged particle beams is accomplished using large electromagnets driven by high currents:
 - high currents resulting in severe problems in terms of the thermal energy dissipation
 - Large dimensions lead to high implementation costs
 - The high costs of operation and implementation make these devices one of the most impactful elements in the design of particle accelerators.
 - In the GeV to TeV energy range, these magnets occupy a considerable part of the accelerator footprint, as demonstrated by the Large Hadron Collider (LHC).

Active pLAsma for beNding (ALAN)_for EuPRAXIA

Curved active-plasma lens: an alternative to classic bending magnets Plasma can sustain large currents, E.g., 15 kA currents produce ~4 T magnetic fields Compactness. Large deflection angles, no need of cryogenic systems Tunability. The bending is tuned by adjusting the discharge-current Cheap solution (capillary+discharge pulser) Tunable dispersion (dispersion-free also possible) by changing the discharge current

$$B_{\phi}(r) = \frac{\mu_0}{r} \int_0^r J(r')r'dr'$$

Requests for the use of *Plasma dipoles*

- Very high voltage pulses and especially currents (from few kA up to tens of kA)
- Design of HV systems to produce appropriate current pulses
 - High peak currents
 - short pulses to preserve capillary structures
- Capillary structure design
 - Geometry of the plamsa source
 - Studies on new materials that can withstand both high currents and, in the future, high repetition rates.
- These topics are closely linked to the EuPRAXIA project.

- Cost reduction
- Compactness
- Low energy consumption

- Materials
- machining for curved channels in hard materials (ceramics)

Design of HV systems to reach very High currents

- Optimization of the current shape
- Negative oscillations

• $C = 1 \text{ uF}, \Delta t > 5 \text{ us}$ Capillary damage

Angelo.Biagioni@Inf.infn.it | 19 June 2025 | Page 10

Second goal: Capillary structure design

- High thermal conductivity
- High max operating temperature
- Good machinability, cost-effectiveness and availability for large geometries
- New materials for electrodes

Stainless steel

Angelo.Biagioni@Inf.infn.it | 19 June 2025 | Page 11

Tab.6 Gantt chart of the ALAN project

Wor package	01/01/2026	01/02/2026	01/03/2026	01/04/2026	01/05/2026	01/06/2026	01/07/2026	01/08/2026	01/09/2026	01/10/2026	01/11/2026	01/12/2026	01/01/2027	01/02/2027	01/03/2027	01/04/2027	01/05/2027	01/06/2027	01/07/2027	01/08/2027	01/09/2027	01/10/2027	01/11/2027	01/12/2027	01/01/2028	01/02/2028	01/03/2028	01/04/2028	01/05/2028	01/06/2028	01/07/2028	01/08/2028	01/09/2028	01/10/2028	01/11/2028	01/12/2028	31/12/2028
WP 1																																					
Design of the curved capillary																																					
Plastic prototype																																					
Shapal prototype																																					
Marx generator (MG) realization																																					
MG tests (short circuit and plasma)																																					
WP2																																					
Beam-plasma interaction																																					
Beam working point definition																																					
WP3																																					
Laser for beam synchronization																																					
Laser system for MG ignition																																					
WP4																																					
Curved capillary installation																																					
Test with the electron beam																																					

Unit	Work	Researchers	FTE
	package		
1 st Unit			
INFN-LNF			
	WP1	Dr. Angelo Biagioni	0.3
		Dr. Lucio Crincoli	0.2
	WP3	Dr. Mario Galletti	0.3
		Dr. Gemma Costa	0.3
		Dr. Maria Pia Anania	0.3
	WP4	Dr. Riccardo Pompili	0.2
		Dr. Alessio Del Dotto	0.2
		Total INFN-LNF	1.8
2 nd Unit			
INFN-Milan			
	WP2	Dr. Andrea R. Rossi	0.3
		Prof. Vittoria Petrillo	0.1
		Dr. Marcello Rossetti Conti	0.15
		Dr. Andrea Frazzitta	0.5
		Total INFN-Milan	1.05
		TOTAL	2.85

Work	WP Leader	WP activity
Package		
WP 1	Angelo Biagioni (LNF)	WP1 will lead the mechanical realization and
		characterization of the curved capillary and
		the HV sources for plasma formation.
WP 2	Andrea R. Rossi (INFN-Milan)	The WP1 activity will be focussed on the
		study of the beam-plasma interaction, The
		WP1 will also pursue the definition of the
		SPARC_LAB accelerator working point.
WP 3	Mario Galletti (LNF)	WP3 will work on the synchronisation of
		electron beam and plasma by means of a laser
		system. It will also study a laser system for
		triggering the discharge in the Marx
		generator.
WP 4	Riccardo Pompili (LNF)	The activity of WP4 will cover the integration
		of the curved capillary and particle beam
		bending experiments in the SPARC_LAB
		accelerator

195.000 €

Unit	Work package	Year 1		Year 2		Year 3	
				•			
1 st Unit INFN-LNF							
	WP1	CapillariesP	10.000	CapillariesS	15.000		
		Capillaries S	10.000	MGprototype	40.000		
		Travel	5.000				
	Tot		25.000		55.000		0
	WP3	Lenses	15.000	Travel	5.000		
		Lens support	10.000				
	Tot		25.000		5.000		0
				1		-	
	WP4			Capillary support	20.000	Travel	10.000
				Movements	15.000		
	Tot		0		35.000		10.000
	1						
2 nd Unit INFN-Milan							
	WP2	C. equipment	5.000	S. licence	10.000	S. licence	10.000
		Travel	5.000	Travel		Travel	5.000
				5.000			
	Tot		10.000		15.000		15.000
	Sum		60.000		110.000		25.000

Angelo.Biagioni@Inf.infn.it | 19 June 2025 | Page 14

Risk	RPN	Mitigation
Durability of the capillary	3	The use of ceramics with high thermal conductivity has so far, in experiments at
material		SPARC_LAB, yielded excellent results regarding the life of discharge capillaries for
		repetition frequencies up to over 200 Hz. Capillary life is significantly extended by reducing
		the frequency of operation, so the ALAN device can be tested at low frequencies.
Plasma discharge stability	2	The use of an external laser system with remotely controlled optics improves the stability of
		the discharge trigger.
Reaching high peak currents	2	A current peak of 15 kA is a relatively low value of the current obtainable with the Marx
with short pulse durations		generator, this is used to achieve much higher values.
		The complexity of the circuit depends on the triggering system of its capacitor sections.
		Initially, even just three capacitors may be sufficient to achieve the parameters required by
		the ALAN design.
Synchronisation and	2	Laser synchronisation of the Marx generator ignition can be more complicated than the
triggering of the discharge in		classical method based on an auxiliary voltage pulse, although more stable and reproducible.
the Marx generator		However, the latter is the solution to be used initially for tests on ALAN device
Control of the electron beam	1	According to preliminary numerical simulations, the electron beam parameters must
parameters to be matched		precisely match those of the plasma and discharge. Furthermore, advanced techniques such
with plasma and discharge		as machine learning could be employed to automatically adapt the electron beam parameters
current		in response to the evolving state of the plasma, accounting, for example, for capillary wall
		erosion and resulting changes in plasma density.

Thank you for your attention

Angelo.Biagioni@Inf.infn.it | 19 June 2025