

Pasquale Di Nezza on behalf of the LHCb LNF group

A selection of current local activities

A selection of current local activities

Muon

The detector is under our full responsibility, including its operation, data quality, and maintenance. We have been affected (and are still affected) by the leave of the Russian colleagues, with whom we previously shared these duties

First months into 2025 data taking show a detector in a very good shape:

- Detector easily time aligned (TAE data)
- Two sets of "special data" (very useful inputs for U2 studies) 💺
- A couple of papers (on preparation)

Responsibilities for the Run3 and Upgrade-II software, and in the Work Package on Detector Modeling for the Simulation Project

E. De Lucia, P. De Simone

A selection of current local activities

Semileptonic $B_S \rightarrow D_S(*) \mid v \text{ decays}$

- Model independent analysis: publish the full 4-D spectrum
- Test form factors calculations
- Sensitive to New Physics

Test of Lepton Flavor Universality Violation with $B_s \rightarrow D_s^* \tau v$

$$R(D_s^{*-}) = \frac{B_s^0 \to D_s^{*-} \tau^+ \nu_{\tau}}{B_s^0 \to D_s^{*-} \mu^+ \nu_{\mu}}$$

LHCb Frascati is the largest group within LHCb Italia, and LHCb Italia, together with the UK groups, represents one of the two largest communities in LHCb. Members from LNF hold several key responsibility, and are first authors of high impact publications

• Persistent anomalies in R(D)- $R(D^*)$ world average, based on LHCb + B-Factories measurements

• This analysis may offers a novel prospective to understand the tension

A selection of current local activities

Measurement of b-hadron production fractions using (semi)inclusive semileptonic decays

> The goal is to measure two fragmentation fraction ratios: $\overline{B}_{s}^{0}(f_{s})$ relative to the sum of $B^{-}(f_{u})$ and $\overline{B}^{0}(f_{d})$

 $\Lambda_b^0(f_{\Lambda_b^0})$ relative to the sum of B^- and \overline{B}^0

New approach based on exclusive semileptonic $B_s \rightarrow D_s \mu v$ and $B \rightarrow D \mu v$ decays

$$\frac{N(B_s \to D_s^+ \mu \nu)}{N(B_d \to D^+ \mu \nu)} = \frac{f_s}{f_d} \cdot \frac{\tau_s}{\tau_d} \cdot \frac{\Gamma(B_s \to D_s^+ \mu \nu)}{\Gamma(B_d \to D^+ \mu \nu)} \cdot \frac{\epsilon_s}{\epsilon_d}$$

• Will provide the first direct measurement of the fragmentation functions f_s/f_d , and also f_u/f_d • Alternative approach with different source of uncertainties compared with inclusive approach

M.Rotondo P. De Simone E. Minucci

Run 3 $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ analysis

M. Santimaria as analysis coordinator

Golden channel for new physics searches: $-B_s \rightarrow \mu\mu$ measured with extreme precision only by LHCb and CMS $-B_s^0 \rightarrow \mu\mu$ never measured, but possible with Run3 data

A selection of current local activities

<u>The new LHCb Long-Lived Particles Working Group:</u>

The new software trigger will make LHCb one of the main players in the search for Dark Sector (or Long-Lived) Particles worldwide. A new Working Group has been created in order to exploit this potential.

An example of the LHCb sensitivity:

A selection of current local activities

SMOGZ

Latest LNF papers:

- Measurement of $\phi(1020)$ meson production in fixed-target pNe collisions at $\sim \sqrt{sNN} \sim = \sim 68.5$ GeV, JHEP 2503 (2025) 151
- High-density gas target at the LHCb experiment, PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 111001 (2024)

The fixed target for LHCb - Project entirely INFN (Frascati, Ferrara, Firenze), PDN PL, the WG-LHCb has >100 members, numerous paper published with high citations+ PhD theses

• Transverse polarization measurement of Λ hyperons in pNe collisions at $\sqrt{sNN} = 68.4$ GeV with the LHCb detector, JHEP 2409 (2024) 082

LHCb is developing a proposal for the high lumi Upgrade-2

A main 'Scoping document' (https://cds.cern.ch/record/2903094) has been produced, along with an addendum from the INFN community as part of the the funding request. The proposal is currently under evaluation by the INFN CSN1 referees, supported by external reviewers. No major issues have been addressed so far. Soon the review output will go to the INFN Giunta and CTS.

 detector enhancement (ECAL, RICH) in LS3

LHCb Upgrade II

- Run 5-6 [2034-]
- expect to collected 300 fb⁻¹

CERN-LHCC-2017-013 CERN-LHCC-2018-027 CERN-LHCC-2021-012

Outcome of LHCC week

Tuesday, June 3rd Meeting with LHCb

LHCC congratulates LHCb on the great work during the YETS and smooth and efficient start of 2025 datataking.

Physics output of LHCb is as usually exceptional, with a new paper accepted to Nature as a flagship.

LHCC is happy to see all subdetectors fully performing with performances better than in 2024. LHCC especially greets stable DAQ performance of the UT and completely recovered performance of VELO.

High level triggers are fully operational within expectations. LHCC encourages LHCb to perform the fine tunning of HLT2 with the aim of lowering the bandwidth while keeping high efficiency. LHCC advises LHCb to monitor the slightly worrying situation regarding the data storage space.

LHCC acknowledges the focus of LHCb regarding the future upgrades to preparation of TDR's for upgrade II, and recognizes the need for a swift composition of expert review groups to help in upgrade roadmap of ASICs required for the upgrades of ALICE and LHCb, and the installation schedule of both experiments.

LHCC recommends the schedules for LS3 enhancements, prepared in the corresponding TDR's, to be updated to accommodate changes due to the LS3 prologation.

(LHCC discussed the space situation in the LHCb cavern and understands that the positioning of CODEX-b experiment there is not feasible.)

Executive summary

Why Upgrade-II ... in a nutshell

Upgrade LHCb detector from $L = 2 \cdot 10^{33} cm^{-2}s^{-1}$ —

LHCb Upgrade II offers a unique physics program with exceptional sensitivity to BSM phenomena, enabling measurements otherwise inaccessible for decades—reaching sensitivities up to $\sim 10^5$ TeV

The upgrade addresses key technological challenges essential for future high energy physics projects, including high granularity, fast timing, high throughput, and extreme radiation hardness. It also defines a technological roadmap that supports the wider detector R&D community

$$\to \sim 10^{34} \ cm^{-2}s^{-1} = \int L = 300 \ fb^{-1}$$

LHCb input to European Strategy

The preparatory work for the Scoping Document has generated various inputs for the ESPP

	Obs
#81 LHCb-PUB-2025-001, "Discovery potential of LHCb Upgrade II", arXiv:2503.23087	$ \frac{\mathbf{CK}}{\gamma} \\ \phi_s \\ V_i \\ \underline{\mathbf{Cha}} \\ \Delta_i \\ \Delta_i $
#82 LHCb-PUB-2025-002, "Technology developments for LHCb Upgrade II", arXiv:2504.03088	$ \frac{\Delta x}{\Delta x} \\ \frac{\mathbf{Rar}}{\mathcal{B}(x)} \\ \frac{\mathbf{Rar}}{B$
#127 LHCb-PUB-2025-004, "Computing and software for LHCb Upgrade II", arXiv:2503.24106	α_{γ} 1.00
#148 LHCb-PUB-2025-003, "Heavy ion physics at LHCb Upgrade II", arXiv:2503.23093	1.00 (S/BM)
#213 "LHCspin: a Polarized Gas Target for LHC", arXiv:2504:16034	Bandwidth (
#223 "Projections for Key Measurements in Heavy Flavour Physics", arXiv:2503.24346	1.00
	1.00

		500 400 200 -200 -400 -500 -500 -100	Time
z [mm]		15 10 5 -5 -10 -15	Time [ps]
ret Station fagnet Station 9) fronization	nb	1-1001 - 1000 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1000 - 1001 - 1000 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1001 - 1000 - 1001 -	
15 p _T [C	Je	E [V	

_1000 ∑ 800 ∑

The required human power has been calibrated against Upgrade I Challenging but plausible for a collaboration the size of LHCb (growing !)

Details on proposed italian participation in the document

- Descrizione dettagliata di attivita', persone, costi
- - ne' eventuali contratti ad-hoc
- Sottoinsieme LS3 Enhancement: 2.1 ME

LNF contributions to the LHCb Upgrade-II

Muon

The main technical challenge lies in the substantial increase in readout rates, especially in the detector's inner region, leading to very high occupancy and rate-induced dead time

High rate effects are mitigated by:

- increasing the granularity of the inner regions: + in R1-R2, use GRWELL (ex μ RWELL) chambers + in R3, new higher granularity MWPCs

- in R4 (80% of detector area) keep current MWPCs: expected to provide adequate performance at Run 5

- additional iron-concrete shielding before M2

- use of a "majority logic" instead of the OR of the 4 gas gaps

Replace of the detector readout to enable a new logic for combining signals from the four gas gaps. By requiring the presence of signals in at least two gas gaps (majority logic), a significant reduction in background can be achieved without noticeable inefficiency for muons. In addition new readout boards and dedicated control system boards are required (Bari, RM2)

Old FEE Scheme

micro-RWELL for the Phase-II upgrade of LHCb Muon system

From µ-RWELL to Hybrid G-RWELL

Classic μ -RWELL layout Prototype tested: M2R1 - LHCb 250x300 mm² Hybrid layout \rightarrow G-RWELL: double amplification stage Prototype tested: 100x100 mm²

Intense R&D and test beam activities

- G. Bencivenni E. De Lucia
- G. Morello

Efficiency(25ns) \geq 0.9 per single gap allows to have high efficiency per station (using chambers with 4 gaps and requiring at least 2 fired gaps fired per chamber station)

FEE: 16 FATIC3 FEE boards

Trackers: 10×10cm² - 1.2mm strip R/O (Capacitive Sharing) Reference: 10×10cm² - 9×9mm² pad R/O HYBRID: 10×10cm² - 9×9mm² pad R/O M2R1: 30×25cm², instrumented 15×13cm² - 9×9mm² pad R/O Gas MIXTURE: Ar/CO₂/CF₄ = 45/15/40

TB area: PS-T10 w/ 5 GeV muons

M. Giovannetti M. Poli Lener

18

The implementation of a preamplification GEM stage to a classic μ-RWELL enables very stable operation at gas gains significantly greater than 10⁴

The time performance of a G-RWELL is improved to as low as 3.8 ns

Next plans:

hybridization of the M2R1 and M2R2 and TB at CERN-PS with FATIC3 + TB at high rate (up to 1 MHz/cm2) at PSI with FATIC4 fee (dead-time 100 ns)

Optimization of the on-board HV distribution/gas distribution/feeintegration

DLC sputtering training

Contacts for detector engineering

MWPC for LHCb U2

MWPC is a well-established, robust, and time-tested technology The LHCb chambers have been operating perfectly since LHC Run 1

Drawback: complex construction process, which requires heavy manual work and full attention to many crucial mechanical details

We have full control of the construction process at LNF, along with all the necessary tools from previous production runs (~400 chambers)

For U2, we need to build up to 200 new MWPCs (with 4 gaps) with higher granularity than the present ones

The Frascati team will maintain a leadership role in the MWPC project, regardless of the final decision on the production sites, which will be defined in the U2 Muon TDR (expected by the end of next year)

In the meantime, we are interested in opening new production sites outside Italy. We have organised a technology transfer session in Frascati in September 2025 with a team from Tbilisi State University (2 chambers will be built)

LHCb Muor **MWPCs**

M2R3 panel

need x4 granularity at U2

- P. Albicocco A. Paoloni
- M. Gatta E. Paoletti R. Tesauro

G. Bencivenni P. Ciambrone G. Morello, M. Palutan

G. Papalino

Chamber construction at LNF

We're restarting the production tools in building 28 and 29 for the September test

Construction steps

1. Panel assembly (PCB+honeycomb) in the clean room

3. Chamber wiring, HV test

2. HV bars glued on the panels in the adjacent lab

glued, and the 4 gaps are finally assembled

20

PicoCal (LHCb ECAL) ... LHCb enhancement, to be completed in the LHC LS3

Current ECAL: Shashlyk modules 12×12 cm²

•Plastic scintillators and WLS fibers

•Radiation-hard to 40 kGy

Upgrade II requirements:

- Instantaneous luminosity to 1.5×10³⁴ cm⁻² s⁻¹
- Sustain radiation up to 1 MGy and 6 × 10¹⁵ n/cm²
- Mitigate pile-up: Time resolution **O(20) ps**

Initial directions for ex-NA62 groups:

- Plastic fibers for SpaCal LNF:
- Shashlyk reconditioning NA:

Inner region: SpaCal technology

- •Innermost region:
 - Tungsten absorber + crystal fibers
- •Plastic fibers for Run 4
- •Replaced with crystal in LS4
- •Intermediate layers:
 - Lead absorber + plastic fibers
- •Develop radiation-tolerant plastic fibers

Outer region: Recondition shashlyk modules

M. Moulson

PicoCal (LHCb ECAL) ... LHCb enhancement, to be completed in the LHC LS3

Current ECAL: Shashlyk modules 12×12 cm²

•Plastic scintillators and WLS fibers

•Radiation-hard to 40 kGy

Upgrade II requirements:

- Instantaneous luminosity to 1.5×10³⁴ cm⁻² s⁻¹
- Sustain radiation up to 1 MGy and 6 × 10¹⁵ n/cm²
- Mitigate pile-up: Time resolution **O(20) ps**

Initial directions for ex-NA62 groups: LNF: Plastic fibers for SpaCal Shashlyk reconditioning NA:

Activity @ LNF Perylene-based orange plastic fibers for PicoCal

Advantage: Radiation hardness Advantage: Faster light emission

Objectives of R&D project:

In collaboration with CERN and Milano Bicocca Materials Science, manufacture, characterize, and test samples of perlyene orange scintillator Irradiate samples at IRRAD

Construct and test SpaCal prototype:

•750 m of perylene-based fiber currently in production at Kuraray, to be delivered in July

•Ready to assemble fibers into SpaCal module for **upcoming test beam** 22

Inner region: SpaCal technology

- •Innermost region: Tungsten absorber + crystal fibers •Plastic fibers for Run 4
- •Replaced with crystal in LS4
- •Intermediate layers:
 - Lead absorber + plastic fibers
- •Develop radiation-tolerant plastic fibers

Outer region: Recondition shashlyk modules

LHCspin

We have the opportunity to explore a wide range of new physics scenarios at the LHC by enabling polarized collisions in previously unexplored kinematic regions and by employing novel probes that have not been used so far

The LHC beams cannot be polarized. The only possibility to have polarized collisions is through a polarized fixed-target.

SMOG2 demonstrates the feasibility of employing a gas target with a storage cell along LHC in LHCb

The project implies the R&D for a new generation target system (+unique measurements) at the LHC-IR4, and then to be part of LHCb for the Upgrade-II

PDN Project Leader: Frascati, Ferrara, Torino ... and many other institutions

The cost is extremely reduced by the existence of a polarized target system to be done compliant with LHC+LHCb

Servizi laboratorio: CIF secondo semestre 2025 - si stimano richieste simili nei prossimi anni

SEM - Progettazione

	ASSEGNATE PRIORITY				RICHIESTE II SEMES. 2025				
Progettazione meccanica di cui 1	1	1	12%	1,5	12%	1,5	LHCb (P.Di Nezza)		

DDEAS - Sviluppo e costruzione riv.

			richiesta					prop	osta		
Esperimento	Richiedente	Descrizione	m.u	Prior.	Tecnici	%	Reparto	m.u.	Prior.	Commenti	
				high	Tesauro	20%	D.D.Unit	0,5	1		
		Incollaggi n.4 GEM per M2R1 e n.4 GEM per M2R2 + n.4 Catodi M2R2	1,0	high	Paoletti	20%	D.D.Unit	0,5	1	U2 LHCD - IB OCt/Nov 2025	
	Di Norro	test wiring MW/PC per TT to Georgia	1,5	high	Tesauro	30%	D.D.Unit	1,5	1	flig L HCh	
lincb	DINEZZA	test wining wweb per 11 to Georgia	1,5	high	Paoletti	30%	D.D.Unit	1,5	1	102 LHCD	
		missions (CEDN non-southering DIC (training) and during)	0,5	high	Russo	10%	D.D.Unit	0,5	1	nov. 2025	
		missione CERN per sputtering DLC (training + produzione)		high	Tesauro	10%	D.D.Unit	0,5	1	nov. 2025	
					_				_		

SPCM

2 LHCB 0,25 stampa 3D n.16 HV box

M.U.

Note: Priority -> 1= High 2= Medium 3= Low

settimana di missione al CERN per passaggio consegne da Saputi (disegn. di LHCb1)

PREVISIONE

Priorità PROGETTAZIONE

mesi = 6

personale = 1 M.U. disponibili*= 5,0

Cognomo	Nomo	LUCH	Altro	Totala	lah	Qualifica	Noto		10 International Decrematibilities
Albicosco	Distre		Altro		JOD	Quaimca			<u> </u>
Albicocco	Pietro	00	10	70	tech	Tech	10% IGINITE		
Bencivenni	Giovanni	70		70	staff				
Campana	Pierluigi	50		50	Pens	Dir Ric			
Chulikov	Vladimir	100		100	dott	Ass Ric			
Ciambrone	Paolo	60	20	80	tecn	Dir Tecn	20% IGNITE		Electronic Coordinator for U2
De Lucia	Erika	70		70	staff	l Ric			Simulation Project Convener + Muon@U2 TB data analysis coordinator
De Simone	Patrizia	95	5	100	staff	l Ric	5% PRIN_202	2N4W8WR	j j
Di Nezza	Pasquale	90	10	100	staff	l Ric	10% PRIN_20	22JS5NYY	SMOG Project Leader
Felici	Giulietto	30		30	Pens	Dir Tecn			J
Giovannetti	Matteo	100		100	pdoc	Ass Ric			
Lanfranchi	Gaia	100		100	staff	l Ric			Long-Lived Particles LPCC-CERN convener
Martellotti	Silvia	20		20	staff	Ric			
Minucci	Elisa	100		100	pdoc	Ass Ric			
Morello	Gianfranco	70		70	staff	Ric			
Moulson	Mattew	20		20	staff	I Ric			
Palutan	Matteo	100		100	staff	Dir. Ric			Institute Board Chair
Paoloni	Alessandro	30		30	staff	l Ric			
Pepe Altarel	Monica	100		100	Pens	PA			
Poli Lener	Marco	70		70	tecn	Tecn			Muon@U2 detector coordinator
Rotondo	Marcello	80	10	90	staff	l Ric	10% PRIN_20	22N4W8WR	
Santimaria	Marco	100	0	100	staff	Ric			Deputy Muon system
Sciascia	Barbara	95	5	100	staff	I RIc	5% PRIN_202	2N4W8WR	Project Leader Muon + Membership Committee Chair
Spadaro	Tommaso	20		20	staff	l Ric			J
				16,9					
			FTE/pers	73,5					

Capitolo	Descrizione	Parziali (K-EUR)	Parziali SJ (K-EUR)	Totale/Cap (K-EUR)
consumo	SMOG2, consumo gas e manutenzione Gas Fill System (GFS) presa dati 2026	4.00	0.00	101.5
consumo	RD_FLAVOUR: MUON@U2 (DRD1-WP1): Produzione del Proto0 4 gas-gaps	50.00	0.00	101.5
consumo	RD_FLAVOUR: MUON@U2 (DRD1-WP1): Studi sui PCB (U2-R&D - DRD1)	10.00	0.00	101.5
consumo	RD_FLAVOUR: PICOCAL@U2: n. 2 produzione custom fibre scintillanti	12.00	0.00	101.5
consumo	Metabolismo Consumo	25.50	0.00	101.5
interno	1 MU per lavori YETS 2025-26 su SMOG2	4.00	0.00	242.5
interno	3 MU per lavori YETS 2025-26 su Muon System e turni piquet MUON	11.00	0.00	242.5
interno	MUON@U2: turni presso la DLC machine al CERN, training di tecnici per operarare la DLC: 12 settimane, 1kE/settimana	12.00	0.00	242.5
interno	MUON@U2: Contatti per Trasferimento Tecnologico con ditta ELTOS per costruzione rivelatori	3.00	0.00	242.5
interno	MUON@U2: Test beam alta rate al PSI: 14 gg (si richiede contributo per soli tecnici) + trasporto 2 autistix3gg x2 (a/r)	8.50	0.00	242.5
interno	RD_FLAVOUR, PICOCAL@U2: 1 settimana 1 tecnico per test beam al cern	1.00	0.00	242.5
interno	Responsabilita'	61.00	0.00	242.5
interno	Metabolismo MI	17.00	0.00	242.5
interno	Metabolismo ME per meeting di collaborazione e turni di presa dati per 16.90 FTE	125.00	0.00	242.5
spservizi	MOF-B MUON	86.00	0.00	86
Totale	/	0	0	430

Total request for 2026: 430 kE of which 95.6 kE are for the upgrade

Cognome	Nome	LHCb	Altro	Totale	Job	Qualifica	Note		10 International Responsibilities
Albicocco	Pietro	60	10	70	tecn	Tecn	10% IGNITE		
Bencivenni	Giovanni	70		70	staff	l Ric			
Campana	Pierluigi	50		50	Pens	Dir Ric			
Chulikov	Vladimir	100		100	dott	Ass Ric			
Ciambrone	Paolo	60	20	80	tecn	Dir Tecn	20% IGNITE		Electronic Coordinator for U2
De Lucia	Erika	70		70	staff	l Ric			Simulation Project Convener + Muon@U2 TB data analysis coordinator
De Simone	Patrizia	95	5	100	staff	l Ric	5% PRIN_2022	2N4W8WR	
Di Nezza	Pasquale	90	10	100	staff	l Ric	10% PRIN_202	22JS5NYY	SMOG Project Leader
Felici	Giulietto	30		30	Pens	Dir Tecn			
Giovannetti	Matteo	100		100	pdoc	Ass Ric			
Lanfranchi	Gaia	100		100	staff	l Ric			Long-Lived Particles LPCC-CERN convener
Martellotti	Silvia								

Elisa

Gian

Matte

Matte

Aless

Marco

Marc

Marc

Barba

Tomn

Descrizione

SMOG2, cor

rd flavou

rd_flavou

RD_FLAVOU

etabolismo

Minucci

Morello

Moulson

Palutan

Paoloni

Poli Lener

Santimaria

Rotondo

Sciascia

Spadaro

consumo

Pepe Altarell Moni

The LNF LHCb group is large and active, playing a key role in both the daily operations and the scientific output of the experiment. Our contributions to Upgrade-II are essential for developing the nextgeneration detector that will push physics to the highest frontiers throughout the LHC lifetime.

All Upgrade II activities at LNF rely on the support of the laboratory, its

infrastructure, services, and dedicated staff ... whom we warmly thank!

nterno	3 MU per lavori YETS 2025-26 su Muon System e turni piquet MUON	11.00	0.00	242.5	of which 95.6 kE are
nterno	MUON@U2: turni presso la DLC machine al CERN, training di tecnici per operarare la DLC: 12 settimane, 1kE/settimana	12.00	0.00	242.5	
nterno	MUON@U2: Contatti per Trasferimento Tecnologico con ditta ELTOS per costruzione rivelatori	3.00	0.00	242.5	the unarade
nterno	MUON@U2: Test beam alta rate al PSI: 14 gg (si richiede contributo per soli tecnici) + trasporto 2 autistix3gg x2 (a/r)	8.50	0.00	242.5	
nterno	RD_FLAVOUR, PICOCAL@U2: 1 settimana 1 tecnico per test beam al cern	1.00	0.00	242.5	
nterno	Responsabilita'	61.00	0.00	242.5	
nterno	Metabolismo MI	17.00	0.00	242.5	
nterno	Metabolismo ME per meeting di collaborazione e turni di presa dati per 16.90 FTE	125.00	0.00	242.5	
spservizi	MOF-B MUON	86.00	0.00	86	
Totale	/	0	0	430	

6:

Backup

Upgrade II schedule

Run 3				LS3		Run 4				LS4		Run 5					
2024	2025	25 2026 2027 2028 2029 2030 2031 2032 2033						2034	2035	2036	2037	2038	2039	2040	2041		
TD	R pha	se	Construction phase							Installation Exploitation							
	Proje	ct Phase		R&D Continger	тсу			Prep Insta	of Prod. allation	& Prototy	/ping		Productio	on & Asse	mbly & T	est	
VE	L0			-			_										
	UP	_	-	_		<u> </u>											
١	MS	_															
1	мт —						_							_	-		
RI	сн —	_					_									_	
TOR	сн —												-		+-		
Pico	Cal			-	_									_			

Year