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Strongly-interacting matter in extreme 
conditions: the Quark-Gluon Plasma

• At high energy density ε → phase transition 
to the QGP

• Colour confinement removed

• Chiral symmetry approx. restored 
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Strongly-interacting matter in extreme 
conditions: the Quark-Gluon Plasma

• At high energy density ε → phase transition 
to the QGP

• Colour confinement removed

• Chiral symmetry approx. restored 

• Lattice QCD (so far limited to small densities):

• εc ~1 GeV/fm3 (Tc~155 MeV ~1012 K at μB=0) 

• Transition is a crossover at low μB
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QGP study in heavy-ion collisions
High-energy nucleus-nucleus → large ε & T (>> εc, Tc) over large volume (~ 10 fm3)

The QGP as seen at the LHC:
✔ Energy density > 10 GeV/fm3

✔ Colour charge deconfined
✔ Strong energy loss for hard partons

✔ Expands hydro-dynamically like a 
very-low viscosity liquid

✔ Hadronizes as in thermal equilibrium
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QGP study in heavy-ion collisions
High-energy nucleus-nucleus → large ε & T (>> εc, Tc) over large volume (~ 10 fm3)

The QGP as seen at the LHC:
✔ Energy density > 10 GeV/fm3

✔ Colour charge deconfined
✔ Strong energy loss for hard partons

✔ Expands hydro-dynamically like a 
very-low viscosity liquid

✔ Hadronizes as in thermal equilibrium

arXiv:2211.04384

https://arxiv.org/abs/2211.04384
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Heavy quarks as ideal probes
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Major (expected) open questions after the 2020s

• What are the mechanisms of chiral symmetry restoration in the QGP? 

→ Systematic measurement of (multi-)charm hadrons 

• Nature of interactions with the QGP of highly energetic quarks and gluons

• QGP temperature throughout its temporal evolution

→ Precision measurements of dileptons 

• QCD chiral phase structure  → fluctuations of conserved charges
• Nature of exotic charm hadrons → charm hadron-hadron correlations

• To what extent do quarks of different mass reach thermal equilibrium ? 

• Initial state of heavy-ion collisions: is the gluon density reaching saturation at small x?
→ Direct probes of small-x initial gluon PDF: forward-rapidity photons

• What are the mechanisms of hadron formation in QCD? 
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Timeline of ALICE upgrades

ALICE 3

• New detector in LS4 (2034-35)

• LoI reviewed in 2022

FoCal & ITS3

• Specific upgrades in LS3 (2026-29)

• TDRs approved in March 2024

• Moving towards “production” phase
CERN-LHCC-2022-009 

FoCal TDR: CERN-LHCC-2024-004 ITS3 TDR: CERN-LHCC-2024-003

Hadronic Si-readout
Electromagnetic

Si-pixel bent 
sensors

https://cds.cern.ch/record/2803563
https://cds.cern.ch/record/2890281
https://cds.cern.ch/record/2890181
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ALICE 3 concept
➠ Novel and innovative detector concept
• Compact and lightweight all-pixel tracker

• Retractable vertex detector

• Extensive particle identification TOF, RICH, MID

• Large acceptance |𝜂|<4

• Superconducting solenoid magnet B= 2 T

• Continuous read-out and online processing

⌀ 1 cm
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Unique ALICE 3 physics goals
• Access to temperature as function of time
➟ high-precision di-electron mass spectra, 

pT dependence, elliptic flow
• Understanding thermalisation in the QGP
➟ direct access to charm diffusion: D-Dbar 

azimuthal correlations
➟ degree of thermalisation of beauty: 

high-precision beauty measurements 
➟ approach to chemical equilibrium: 

multi-charm hadrons
• Fundamental aspects of the QCD phase 

transition
➟ net-baryon and net-charm fluctuations
➟ mechanism of chiral symmetry restoration 

in the QGP: di-electron mass spectrum
• Laboratory for hadron physics
➟ hadron-hadron interaction potentials
➟ explore nature of exotic hadrons 

(tetraquarks)

ALICE 3 LoI, CERN-LHCC-2022-009 

~1 fm/c                    ~10 fm/c                                   time

tim
e

Time dependence of 
temperature only 
accessible with ALICE 3

temperature

electromagnetic radiation (virtual photons → e+e-)
e-

e+

e-

e+

e-

e+

https://cds.cern.ch/record/2803563
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Unique ALICE 3 physics goals

ALICE 3 LoI, CERN-LHCC-2022-009 

Charm pair azimuthal correlation

Back-to-back 
correlation

• Access to temperature as function of time
➟ high-precision di-electron mass spectra, 

pT dependence, elliptic flow
• Understanding thermalisation in the QGP
➟ direct access to charm diffusion: D-Dbar 

azimuthal correlations
➟ degree of thermalisation of beauty: 

high-precision beauty measurements 
➟ approach to chemical equilibrium: 

multi-charm hadrons
• Fundamental aspects of the QCD phase 

transition
➟ net-baryon and net-charm fluctuations
➟ mechanism of chiral symmetry restoration 

in the QGP: di-electron mass spectrum
• Laboratory for hadron physics
➟ hadron-hadron interaction potentials
➟ explore nature of exotic hadrons 

(tetraquarks)

c

c

https://cds.cern.ch/record/2803563
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Unique ALICE 3 physics goals

ALICE 3 LoI, CERN-LHCC-2022-009 

~1 fm/c                    ~10 fm/c                                   time

Charm pair azimuthal correlation

Not accessible without ALICE 3

• Access to temperature as function of time
➟ high-precision di-electron mass spectra, 

pT dependence, elliptic flow
• Understanding thermalisation in the QGP
➟ direct access to charm diffusion: D-Dbar 

azimuthal correlations
➟ degree of thermalisation of beauty: 

high-precision beauty measurements 
➟ approach to chemical equilibrium: 

multi-charm hadrons
• Fundamental aspects of the QCD phase 

transition
➟ net-baryon and net-charm fluctuations
➟ mechanism of chiral symmetry restoration 

in the QGP: di-electron mass spectrum
• Laboratory for hadron physics
➟ hadron-hadron interaction potentials
➟ explore nature of exotic hadrons 

(tetraquarks)

https://cds.cern.ch/record/2803563
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Unique ALICE 3 physics goals

ALICE 3 LoI, CERN-LHCC-2022-009 

~1 fm/c                    ~10 fm/c                                   time

Only accessible with 
ALICE 3

x100 enhancement 
in Pb-Pb wrt pp

• Access to temperature as function of time
➟ high-precision di-electron mass spectra, 

pT dependence, elliptic flow
• Understanding thermalisation in the QGP
➟ direct access to charm diffusion: D-Dbar 

azimuthal correlations
➟ degree of thermalisation of beauty: 

high-precision beauty measurements 
➟ approach to chemical equilibrium: 

multi-charm hadrons
• Fundamental aspects of the QCD phase 

transition
➟ net-baryon and net-charm fluctuations
➟ mechanism of chiral symmetry restoration in 

the QGP: di-electron mass spectrum
• Laboratory for hadron physics
➟ hadron-hadron interaction potentials
➟ explore nature of exotic hadrons 

(tetraquarks)

𝚵cc

https://cds.cern.ch/record/2803563
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Unique ALICE 3 physics goals

ALICE 3 LoI, CERN-LHCC-2022-009 

~1 fm/c                    ~10 fm/c                                   time

D

D*

Charm pair strong interaction

Only accessible with 
ALICE 3

• Access to temperature as function of time
➟ high-precision di-electron mass spectra, 

pT dependence, elliptic flow
• Understanding thermalisation in the QGP
➟ direct access to charm diffusion: D-Dbar 

azimuthal correlations
➟ degree of thermalisation of beauty: 

high-precision beauty measurements 
➟ approach to chemical equilibrium: 

multi-charm hadrons
• Fundamental aspects of the QCD phase 

transition
➟ net-baryon and net-charm fluctuations
➟ mechanism of chiral symmetry restoration in 

the QGP: di-electron mass spectrum
• Laboratory for hadron physics
➟ hadron-hadron interaction potentials
➟ explore nature of exotic hadrons 

(tetraquarks)

https://cds.cern.ch/record/2803563
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• Retractable vertex detector inside beam pipe (Iris)
• Target specifications for pixel sensor: 10x10 𝜇m2 

pixels, <50 𝜇m thickness, NIEL: ~1016 1 MeV neq/cm2 

stable
beam
s injectio

n

Vertex Detector concept and R&D
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60 m2 silicon pixel detector 

R&D focuses on: 
• sensor design 
• concept of module based on industry-standard processes for assembly
• cooling options (air and water) 

Outer Tracker layout and R&D
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3σ e/𝜋 separation vs η, pT

e, π, K, p separation with TOF + RICH detectors, with specifications σt = 20 ps, σθ = 1.5 mrad 

3σ 𝜋/K separation vs η, pT

Electron and hadron ID requirements
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Two R&D lines in ALICE:
• Hybrid LGADs: R&D with thin sensors

        → close to target time resolution in test beams

● CMOS LGAD (baseline): 
 → single chip with sensor and readout
 → significant cost reduction
 → first prototypes, test beams, optimisation

Barrel TOF (|η| < 2)
• Outer TOF: radius = 85 cm, pitch = 5 mm
• Inner TOF: radius = 19 cm, pitch = 1 mm

Forward TOF disks (2< |η| < 4)
• Radial size = 15-100 cm, pitch = 1 mm 

ARCADIA 
MAPS

Silicon Time of Flight

Target time resolution: 20 ps

Hybrid LGAD time resolution CMOS-LGAD (MadPix)
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Barrel RICH (|η| < 2)
• radius= 0.9m, length= 5.6m
• photon detection area = 39 m2

• readout cell size = 2 x 2 mm2 

Forward RICH (2 < |η| < 4)
• photon detection area = 14 m2

silica aerogel

Target Cherenkov angle resolution 
achieved in test beam with small 
detector prototype

R&D focuses on choice of SiPM, 
radiation tolerance and cooling 

RICH with Si photon sensors

ALICE 3 RICH
Test beam
Oct 2024

Preliminary results
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ALICE 3: current organisation

N. Jacazio (Torino)
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Interests of national groups and organisation



ALICE 3 timeline
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2022:                Letter of Intent reviewed by LHCC → very strong support

2023 – 2025:   detector scoping, resource planning, sensors selection, small-scale prototypes

2026 – 2027:   large-scale engineered prototypes  → Technical Design Reports 

2028 – 2031:   construction and assembly

2032 – 2033:   contingency and pre-commissioning

2034 – 2035:   Long Shutdown 4 - installation and commissioning

2036 – 2041:  physics campaign, Pb-Pb ~35 nb-1, pp ~ 18 fb-1



Detector scoping options: v1, v2, v3
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Reference Detector Configuration v1
● B=2T field
● |𝞰| < 4 tracker and PID
● with ECal

B=2 T

Version without ECal and smaller 
magnet radius → v2-2T

Possibility to reduce B field strength 
to 1 T → v2-1T

2 T or 1 T

Reduced acceptance v3-1T
|𝞰|<2.5 tracker, |𝞰|<2 with PID1 T
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Detector Version CORE cost, 
including magnet and 

common items
Main physics degradation

v1
● B=2T field
● |𝞰| < 4 tracker and PID
● with ECal

170 MCHF Full LoI programme

v2-2T (without ECal) 145 MCHF Degradation of measurements 
based on photons and jets

v3-1T (reduced acceptance)
● without ECal
● B=1T field
● |𝞰| < 2.5 tracker and < 2 PID

123 MCHF

General degradation of heavy 
flavour measurements. 

Degradation of correlation 
measurements.

No rapidity-dependent studies.

Detector scoping options: v1, v2, v3



Thanks for your attention!
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Forward Calorimeter (FoCal)

• Main goal: direct photon detection in p-Pb to probe gluon density in Pb down to 
x~10-6 , well below saturation scale QS

• and much more: correlations, jet, J/𝜓 in hadronic and UPC collisions
• Unique programme, complementary to LHCb, ATLAS/CMS and EIC coverage; 

EM probes (photons) complementary to hadronic ones (e.g. charm) 

3.2 < η < 5.8

Impact on shadowing factor of Pb gluons  

CERN-LHCC-2020-009
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Forward Calorimeter (FoCal)

• Main goal: direct photon detection in p-Pb to probe gluon density in Pb down to 
x~10-6 , well below saturation scale QS

• and much more: correlations, jet, J/𝜓 in hadronic and UPC collisions
• Unique programme, complementary to LHCb, ATLAS/CMS and EIC coverage; 

EM probes (photons) complementary to hadronic ones (e.g. charm) 

3.2 < η < 5.8

Projection of J/𝜓 photoproduction in p-Pb
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FoCal prototype performance

EM Energy
distributions

Hadronic energy 
resolution ~15%

FoCal test beam paper: https://arxiv.org/abs/2311.07413 

Shower width better than 
1 mm in pixel planes 

https://arxiv.org/abs/2311.07413
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ALICE tracking+PID: upgrade strategy
Large steps in pointing precision and 

“effective acceptance” + 
Keep/strengthen ALICE unique reach in 

particle identification
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ITS3, a cylindrical pixel barrel 

• Detection layers closer to the interaction point, rinner: 23 → 19 mm
• Reduced beam pipe diameter, rpipe: 18 → 16 mm
• Reduced thickness (~ no supporting structures, air cooling), x/X0: 0.36% → 0.09%  

✕ 2

Pointing resolution

CERN-LHCC-2019-018



31

ITS3, a cylindrical pixel barrel 

• Improve vertexing performance and reduce backgrounds for:
• Heavy-flavour hadrons → interaction of heavy quarks in QGP
• Low-mass dielectrons → thermal radiation from QGP

Nuclear modification of Bs in Pb-Pb Inverse slope T of thermal e+e- dN/dMSignificance of 𝛬b

CERN-LHCC-2019-018
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ITS3: towards final components

Engineering Model 3
● All three layers, with dummy sensors
● Mechanical support structure (carbon 

foam longerons and spacers)
● FPCs integrated on both sides

Pixel sensor Engineering Run 1
● Monolithic Stitched Sensor (MOSS): 259x14 mm2  x50 𝜇m
● Extensively tested and validated

Preparation of Engineering Run 2, for final sensor (MOSAIX)
● Stitched in both directions: 259x105 mm2 x50 𝜇m
● Final verification ongoing;  expected delivery after summer
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ITS3 recent highlights
MOSAIX FPC A side Layer 0 (R=19 mm) 

● wire-bonding tests of curved components 
(FPC and sensor) on cylindrical support

det. eff.

FHR

MOSS stitched prototype performance after 
irradiation

● large operational margin even beyond specs 
(TID 400 krad, NIEL 4x1012 1 MeV neq cm-2)
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ITS3 recent highlights
ITS3 Engineering Model 3

● 50 µm half-layer sensors from 
ER1 pad wafers 

● final carbon foam components
● integration & air cooling qualified

FPC assembly design for MOSAIX (ER2)
One specific FPC per each layer

FPC A side, full size, 
fully functional



R&D for Outer Tracker
Barrel layout and design:

● Study compatibility with the different detector volumes
● Study of interfaces and integration of services
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● Air cooling studies 

● Module fixation and assembly procedure

● Stave carbon spaceframes prototype (similar to CBM STS)
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• Necessary for quarkonium to dimuons
• Hadron absorber outside the magnet

– ~70 cm of steel
• Muon chambers

– search spot for muons ~0.1 x 0.1 (eta x phi)
→ ~5 x 5 cm2 cell size

– matching demonstrated with 2 layers 
of muon chambers

• scintillator bars with SiPM read-out 

• resistive plate chambers

• multi-wire proportional chambers

Muon Identifier



R&D for Muon ID detector
1x1 m2 module design and barrel layout:

● Module mechanics, detailed scintillators and SiPM integration
● Arrangement in barrel, services integration

25x25 cm2 prototype 

Testbeam in Oct 24 of Scintillators/SiPM 
and MWPC prototypes using final size iron 
absorber:

● First test of scintillator casted directly in 
container

● Analysis in progress

Front-End Card preliminary design
● First prototypes available
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Forward Detectors

Two segmented scintillator disks for charged particle detection 
at 4 < |𝜂| < 7:

● event characterization
● vetoing for diffraction and UPC measurements

Baseline layout: Eljen scintillators and fine-mesh PMT

R&D will mainly focus on:
● different scintillators (PEN/PET)
● alternative photon detectors: SiPM or LAPPD
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Pointing resolution ~ few μm at ~1 GeV/c    
→ critical for heavy-flavour and dielectron 
measurements 

(Run 3)

(Run 4)

(Run 5)  

 Requires pushing the frontiers in many respects: 

Frontier R&D on CMOS Monolithic Active Pixel 
Sensors (MAPS): curved, thin, large-area, low 
power
→ build on experience with ITS2 and ITS3 

Inner Tracker and Vertex Detector



40

Inner TOF, R = 20 cm Outer TOF, R = 85 cm RICH, R = 90 cm

e e

e

p p

p

e, π, K, p separation with TOF + RICH detectors, with specifications σt = 20 ps, σθ = 1.5 mrad 

+ endcap TOF and RICH

Electron and hadron ID requirements
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1)                                2)

ALICE 3: integration studies

3)                                                4)

● Study of integration scheme 
with alternating services

● Enables modular and 
independent installation of: 
tracker endcaps, RICH and TOF 
barrels, RICH and TOF endcaps

● Improves contingency in LS4 
schedule
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FCT studies
Standard beampipe

Conical beampipe

Standard beampipe, no eID Standard beampipe, eID

Conical beampipe, no eID Conical beampipe, eID

Background
Low’s photons



Superconducting magnet: design plans
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• Brazilian Center for Research in Energy and Materials 
(CNPEM) and University of Sao Paulo (USP) intend to 
lead the magnet project, from design to construction
• In collaboration with ALICE Techn. Coord., CERN EP R&D 

Magnet group and INFN Genova

• CNPEM engaged recently in discussions with Furukawa 
Brazil to resume SC cable production

• In-person meetings with CNPEM and FAPESP last 
12-13 March → funding discussions in progress

• Magnet design activities are starting: 

Simulated
field map

2T



Superconducting cable: procurement options
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Rutherford cable

Aluminium

Baseline:
Aluminium-cladded

 Nb-Ti conductor

Furukawa Electric (Brazil)

Wuxi-Toly (China) 

CERN R&D program with ICAS (Italy)

Fallback option:
Copper-cladded 

Nb-Ti conductor (Luvata, US)

Furukawa
Plan to establish production chain

Production can be re-established

EMuS cable samples under test


