

Energy calibration with X-rays

Matteo Folcarelli BULLKID-DM - Collaboration meeting in Ferrara 01/07/2025

Outline of the presentation

mm), in contrast to optical photons, which are fully absorbed at the surface (λ =82 nm)

Data Acquisition

Acquisition of three main KIDs (46,47,49) in coincidence with their neighbours for a total of 28 h. The americium source is located inside the cryostat outside the aluminum pot

Energy spectra

KID	Mean [keV]	σ [keV]	Mean - nominal
46	56.2 ± 0.1	2.2 ± 0.1	-6 %
47	55.5 ± 0.2	2.4 ± 0.2	-7 %
49	57.2 ± 0.2	2.9 ± 0.2	-4 %

Energy spectrum of KID 49 in the energy range [45, 70] keV calibrated with optical calibration. The americium peak is fitted with a gaussian model and the red-dashed vertical line represent the 59.5 keV nominal energy

Neighbour analysis for bulk events

Effects related to interactions in the bulk position of americium can be investigated by studying the partition energy between main and neighbouring dice

Neighbour analysis for bulk events

Neighbour analysis for bulk events

Energy ratio between three couples of neighbors of KID 49: left/right, top/bottom, up-right/down-left corners. Only americium events are considered. We observe a positive correlation in all the three cases

Calorimetric amplitude

Following the results just exposed, **the sum of the amplitudes of all the KIDs**, corrected for the quality factor, should be able to compensate the anti-correlation and improve the resolution of ²⁴¹Am events

Calorimetric energy spectra

Comparison between the energy spectrum of KID 49 using the standard and the calorimetric LED calibrated energy

Calorimetric energy spectra

Comparison between the energy spectrum of KID 49 using the standard and the calorimetric LED calibrated energy

Conclusions and status of the paper

- Calibration of the bulk events induced by the 59.5 keV gamma rays of ²⁴¹Am
- Standard optical calibration validated with a deficit below 10%
- Energy resolution improved from 5 to 2% (σ) by summing the energies of neighbouring dice

Eur. Phys. J. C manuscript No. (will be inserted by the editor)	
nergy calibration of bulk events in	the BULLKID detector
A. Acevedo-Rentería ³ , L. E. Ardila-Perez ² , P. Azzurri ⁴ , L M. Cappelli ^{1,2} , R. Caravia ¹⁰ , F. Carillo ¹ , U. Chowdhury ² , J. De Luci ^{1,4} , G. Del Castello ¹ , ^{1,2} , N. del Gallo Roccagiovin Perraro ¹ , Mattos Folcarelli ^{1,1,2} , S. Fu ⁴ , R. Gartmann ⁴ , I. Lari ^{1,4} , L. Malagutti ¹ , A. Mazzolar ^{1,4} , A. Monfardin ¹ , Paolucci ^{1,4} , D. Dasciuto ¹ , J. Pecec ^{1,2} , C. Puglia ¹ , D. Qu Koddaro ^{1,4} , M. Romagnoni ⁶ , G. Signorelli ^{1,4} , F. Simon ¹ Xiaquez, Jiancgu ^{1,4} , M. Romagnoni ^{1,6} , G. Signorelli ^{1,4} , F. Simon ¹	. Bandiera ⁶ , M. Calvo ⁷ , A. Cruciani ² , A. D'Addabbo ⁸ , ei ² , D. Delicato ¹⁻²⁷ , M. Grassi ¹ , V. Guidi ^{6,11} , T. Muscheid ⁹ , D. Nicolo ^{3,4} , T. Muscheid ⁹ , D. Nicolo ^{3,4} , M. Tamisari ^{6,12} , A. Tartari ⁴ ,
Dipartimento di Fisica, Sapienza Università di Roma, P. le A. Moro 2, NNFN Science di Roma, File A. Moro 2, 00158 Roma, Italy Dipartimento di Fisica Tenico Ferrito, Università di Pisa, Largo Bruno de La Constanza e Pisa Constanza e Pisa Cargo Bruno Inditino de Fisica, Università di Necimal Antériona de Mixico AP 20 Nel Nes Scienco di Ferrara, Via Saragat, 14122 Ferrara, Italy Universito for Data Processing and Electronics, Karlsruhe Institute of 1 Ministra de Tonica Processing and Electronics, Karlsruhe Institute of 1 Ministra de Data Science 1, 2010 Constanti de Cargo Science (AQ). Italy Egenetica Leopoldaderi. Germany MirtN: Laboratori Lines a Science Alas Java Pisa Constanti de Cargo MirtN: Laboratori Lines a Science della forra Università di Ferrara, Via Dipartimitto di Neuroscience Riabilitazione, Università di Ferrara, Na en 52 2023	00185 Rona, Italy Pontecorvo 3, 56127 Pisa, Italy -364, Ciudad de México 01000, México Grenoble, France Schnology, Hermana-von-Helmholtz-Platz 1 76344, Sargari 1, 44100 Ferrans- Italy /ia Luigi Borsari 46, 44121 Ferrans - Italy
Abstract BULLKID is a cryogenic, solid-state detector de- igned for direct searches of particle Dark Matter canti- lates, with mass 2 I GeV/c ² , and obterent neutrino nucleus scattering. It is based on an array of dice carved in 5 mm hick crystals, sensed by phonon mediated Kinetic Induc- ance Detectors. In previous works, the array was calibrated with bursts of optical photons, which are absorbed in the first micrometer of the dice and behave as surface events. In this work, we present the reconstruction of bulk events	Detectors (KIDs). It is designed for the detection of sub-keV energy depositions from particle interactions within the crys- tal, making it suitable for direct Dark-Matter (DM) searches and coherent elastic neutrino-nucleus scattering (CE:NS) experiments. One of the main challenges in this low-energy regime is the energy calibration and, so far, the BULLKID- DM collaboration has adopted a method based on bursts of 400 nm optical photons [3, 8]. These photons produce electron recoils near the surface of the crystal, nullke DM or

which emulates more closely the interaction of Dark Matter shifted by less than -10 % with respect to the optical calibration. The resolution is further improved by a factor ~ 2 combining the signal from neighbors dice. These results confirm the performance of the detector in view of the physics goals of the BULLKID-DM experiment.

1 Introduction

BULLKID [2, 5, 7] is a monolithic array of dice of 5.4 × 5.4 × 5.0 mm3 carved in crystal (silicon or germanium) and sensed by phonon-mediated cryogenic Kinetic Inductance

^ae-mail: matteo.folcarelli@uniroma1.it (corresponding author)

throughout the crystal volume (bulk events). Validating this and neutrinos. The peak resolution is 4.5% and its mean is optical calibration method, using particle interactions, is thus of critical importance to confirm the detector's performance under realistic conditions. In this work, we present such a validation by reconstructing the 59.5 keV X-ray peak from a radioactive 241 Am source using a silicon BULLKID. These X-rays, see (Fig. 1), are sufficiently energetic to penetrate the entire crystal volume ($\lambda_{abs} = 13 \text{ mm}$) [9], in contrast to optical photons, which are fully absorbed at the surface $(\lambda_{whe} \sim 82 \text{ nm})$ [6]. This measurement both confirms the reliability of the optical calibration technique and allows the investigation for different responses between bulk and surface events.

Background with mild shield

Energy calibration with Pb X-ray peaks

Fitting strategy

Fitted the peaks in two intervals in the uncalibrated [mrad] amplitude. Assumed a **linearly decreasing** background and **fixed the relative position and intensity of the peaks**. In each interval, assumed the same sigma for all the peaks.

Calibration function

Conclusions

- The presence of the X-ray peaks of Pb allowed the energy calibration during the last acquisition with mild shield.
- Discrepancy with optical calibration of -10%, confirming the results of americium analysis
 - Evaluation of the cut's efficiency at high energy

Thank you for the attention

Matteo Folcarelli BULLKID-DM - Collaboration meeting in Ferrara 01/07/2025