

New detector's layout

Matteo Cappelli BULLKID-DM Collaboration Meeting Ferrara, 02-07-2025

Matteo Cappelli - BULLKID-DM CM Ferrara 2025

Content

• BULLKID 3-inches layout

- Current mask for BULLKID 3-inches
- The need for a new layout
- SONNET simulations
- New 3-inches layout

• Frequency map

- Current frequency ordering
- New frequency ordering: random vs non-random

• BULLKID 100 mm layout

- Current mask for BULLKID 100 mm
- The need for a new mask
- Status of the new mask

BULLKID 3-inches layout

Current layout

• Layout of recently measured STACK-04 wafers

- Inductive coupling with the CPW via the meander
- Resonant frequency tuned via capacitive finger length

Current layout

• Some (important) dimensions

Current layout

• With this layout, the coupling quality factor Qc is around 100k

Distribution of the total quality factor over all the wafer

The **measured value** for the coupling quality factor (median of 117k) **matches simulations** of 103k

Matteo Cappelli - BULLKID-DM CM Ferrara 2025

- Cross talk observed during background run when neighbouring pixel are biased at their optimal power
- The working point of the central channel changes if neighbour channels are biased
- We decided to keep the power on neighbour channels as low as possible

Pixel 49 at Optimal Power, Neighbours at -40 dBm

- Cross talk observed during background run when neighbouring pixel are biased at their optimal power
- The working point of the central channel changes if neighbour channels are biased
- We decided to keep the power on neighbour channels as low as possible

Pixel 49 at Optimal Power, Neighbour 48 at Optimal Power, Neighbours at -40 dBm

One neighbour (left), visible cross talk

- Cross talk observed during background run when neighbouring pixel are biased at their optimal power
- The working point of the central channel changes if neighbour channels are biased
- We decided to keep the power on neighbour channels as low as possible

Pixel 49 at Optimal Power, Neighbour 48 and 50 at Optimal Power, Neighbours at -40 dBm

Two neighbours (left right), even more cross talk

- Cross talk observed during background run when neighbouring pixel are biased at their optimal power
- The working point of the central channel changes if neighbour channels are biased
- We decided to keep the power on neighbour channels as low as possible

Pixel 49 at Optimal Power, Neighbour 38 and 49 at Optimal Power, Neighbours at -40 dBm

Two neighbours (top bottom), no cross talk

- Cross talk observed during background run when neighbouring pixel are biased at their optimal power
- The working point of the central channel changes if neighbour channels are biased
- We decided to keep the power on neighbour channels as low as possible
- This cross-talk is likely **electromagnetic cross-talk** (resonators near in space and frequency influence each other)
- Possible solutions:
- Increase resonators quality factors so they need less power
- Keep neighbouring pixels far in frequency

New pixel design to increase quality factor from 100k → 200k New frequency mapping to maximise frequency spacing between pixels

SONNET simulations

- To choose the new pixel layout, we simulate its frequency response with the SONNET software
- It works by sub-sectioning the circuit and solving Maxwell's equations for each pair of subsections

New 3-inches layout

• After many simulations... (simulations very sensitive to meander-ground distance and other specific parameters) the new layout has been identified

• Key element: guard ring distance provides an efficient and stable way to control the quality factor Increase distance wrt current layout → resonator is less coupled to the circuit → Q increases

New 3-inches layout

• With this layout, we get a simulated Q-factor of 242k

The simulation of the resonance is well performed

Uniform charge and current across the resonator

Current density distribution

Frequency map

Current frequency ordering

- 60 resonators, 1 feedline
- Resonators that are close in space are also close in frequency

• Electromagnetic cross-talk effects can be problematic

EM cross-talk effects

@Work by

Gianluca Pesce

• Simulated **current density distribution** at the resonant frequency of top-right KID. Visible **cross-talk effects** due to electromagnetic coupling.

JXY Magnitude nps/Meter 48845 45088 High electromagnetic Resonating KID 41330 cross-talk due to 37573 proximity in space and 33816 frequency 30058 26301 22544 18787 Less electromagnetic 15029 Less cross-talk (far in space 11272 electromagnetic and in frequency) cross-talk (far in 7514.6 space) 3757.3 0.0000

New frequency ordering (random)

- Idea: maximize the difference in resonant frequency between neighbouring pixels. Not a trivial mathematical problem
- Random ordering (first proposal)

The matrix is filled randomly with the constraint that the **distances from the nonet is** \geq 7. But there are some second neighbours with distance 1 (e.g. 25 and 26)

Random ordering (second proposal)

Here distance from the nonet is >= 4 and distance from second neighbours is >= 3

New frequency ordering (non-random)

• Idea: maximize the difference in resonant frequency between neighbouring pixels. Not a trivial mathematical problem

1	5	9	13	2	6	10	14
17	21	25	29	18	22	26	30
33	37	41	45	34	38	42	46
49	53	57	61	50	54	58	62
3	7	11	15	4	8	12	16
3 19	7 23	11 27	15 31	4 20	8 24	12 28	16 32
3 19 35	7 23 39	11 27 43	15 31 47	4 20 36	8 24 40	12 28 44	16 32 48

Distances are >= 3 up to the third neighbours.

- Pros
- High frequency spacing ensured for many neighbours
- Pattern for easy frequency identification
- Cons
- Possible interference caused by higher harmonics?

BULLKID 100 mm layout

Current layout for 100 mm array

Matteo Cappelli - BULLKID-DM CM Ferrara 2025

New detector's layout

Quality factor mismatch

• Mismatch between the simulated and the measured quality factor

@Work by Gianluca Pesce

Matteo Cappelli - BULLKID-DM CM Ferrara 2025

New detector's layout

Quality factor mismatch (solved)

• Mismatch between the simulated and the measured quality factor

Simulated quality factor of 1.3 M

• Measured quality factor of 1.4 M

Solved by re-performing the SONNET simulations with more resources

New 100 mm array layout (preliminary)

- A Q > 1 M is too high: we need to lower the quality factor
- CPW distance increased to $20 \, \mu m$
- Coupling capacity length increased from 2.6 mm to 2.8 mm
- Now guard ring is symmetric and its distance is 220 um from the meander

Simulated quality factor of 200k

Thanks for your attention!

Backup slides

Cross talk during background run

- Cross talk observed during background run when neighbouring pixel are biased at optimal power
- The working point of the central channel changes if neighbour channels are biased
- We decided to keep the power on neighbour channels as low as possible

Matteo Cappelli - BULLKID-DM CM Ferrara 2025

EM cross-talk study

• Simulate two adjacent KIDs, varying the resonant frequency of the second by varying the capacitive finger length ΔI

@Work by Gianluca Pesce

• Study the resonant frequency behavior as a function of ΔI and when $\Delta I \rightarrow 0$

EM cross-talk study

• Study the resonant frequency behavior as a function of ΔI and when $\Delta I \rightarrow 0$

@Work by Gianluca Pesce

• When $\Delta I = 0$, the resonant frequencies of the two KIDs are not equal, but they differ by ~ 2 MHz