

Surface background with mild shield: an update from the demonstrator

01/07/2025 - BULLKID-DM Meeting - Ferrara

Daniele Delicato on behalf of the collaboration

Istituto Nazionale di Fisica Nucleare

Status of the BULLKID 3" demonstrator

Status of the BULLKID 3" demonstrator*

*as of, 16/01/25

- **Thermalization** of the wafers via the copper structure
- **Electrical coupling** not compromised by proximity among wafers
- Energy threshold on par with earlier prototypes
- Scale readout and analysis to simultaneously measure multiple wafers
- Background in a shielded environment flat and lower than 10⁵ dru

From the CDR:

For the time

being we plan to repeat the measurement with a mild lead shield at Sapienza U. before the end of the year (the maximum amount of lead is limited to a few kg by the load that the current cryostat can sustain). This shield is expected to reduce the background by a factor close to 50, below 10^5 DRU.

Flat background $< 10^5$ dru demonstrated

- Above ground
- Passive internal and external Pb shields

To probe background < 650 eV

- Lower threshold
- More active pixels
- Overall better samples are needed

Conclusions last meeting: produce more uniform arrays

Fabrication status of additional stack elements: STACK-04

Stack-04: 60nm Al

57 working pixels out of 60

Quality factor (median): 120k

Coupling Q factor (median): 130k

Bonding across the line removed artifacts

Preliminary test in ROME + bondings P165 @ 30mK; Qi > 5M Single wafer configuration

Bulk (Am) vs Surface (LED) events

KID

х

Preliminary

common disk

carvings

.5 mm

70 -

60

50

40

20 10

20

35

40

45

50

Counts/0.2 [keV]]

(kev)⁻¹]

↓0.5 mm

Interaction probability

Depth 2

See talk by M. Folcarelli

- Dedicated cooldown with Am source (59.5 keV X-Ray)
- -10% discrepancy between calibrations

Background issue in low-T experiments

Not understood excess background rising at low energies

- Phonon bursts (crystal-support friction) ?
- Lattice relaxations after cool down?
- Phonon leakage from interactions in the supports?

Excess workshop 2025 Santa Fe, 31 May https://indico.cern.ch/event/1502420/

This background limits the sensitivity of present experiments

15 KIDs in 2 Clusters Run time: **19 Apr 22:00 -> 5 May 8:00** Live hours per cluster: 290 Internal and external lead shield

More pixels, more electronic x-talk

Sonnet simulations of x-talk induced by proximity

See talk by M. Cappelli

Induced current density: 30%

Induced current density: 3%

More pixels, more possible clusters

Stability evaluation

Fire LED on KID-48, evaluate stability of masters with leakage signal

Optimum filter used for energy reconstruction

Pulse selection, shape cuts on OF parameters

- Cut **Chi2** (index of deviation from template in the whole window)
- Cut on **ChiLeft** (index of deviation at *T_L*)
- Cut on **ChiRight** (index of deviation at T_R)

Chi2 ∈ [1.1, 1.38]

ChiL \in [-2,2]

Evaluation of cluster cuts

$$\psi_i = \frac{\delta\phi_i - (\delta\phi_c \cdot \mu_{r_i})}{\sqrt{\sigma_{0,i}^2 + (\sigma_{0,c} \cdot \mu_{r_i})^2}}.$$

Evaluation of cluster cuts

* Not actual data from BULLKID

Pulse selection, coincidence cuts (KID-47)

Pulse selection, coincidence cuts (KID-47)

Pulse selection, coincidence cuts (KID-47)

Efficiency evaluation on LED events

23

High Energy Spectrum and Simulation Comparison

Conclusion and future prospects

What do we need to investigate the spectrum further?

- More simulations
- More pixels per cluster?
- Better resolution of veto pixels
- Lower threshold (AlTiAl ready to test)
- More shielding

Background: pulse shape + phonon cuts

D. Delicato et al, Eur. Phys. J. C 84 (2024) 353

KIDs on Germanium for neutrino detection

	$d\phi/dE \ { m [mrad/keV]}$	$\sigma_0 [{ m eV}]$	$\eta~[\%]$	$\frac{A_{\rm KID}}{A_{\rm TOT}}$
KID-1	3.6 ± 0.2	380 ± 20	2.0 ± 0.2	0.12
KID-2	2.5 ± 0.1	450 ± 22	2.0 ± 0.2	"
KID-3	2.2 ± 0.2	540 ± 31	1.6 ± 0.2	"
CALDER-17	5.8	115 ± 6	7.4 - 9.4	0.42

D. Delicato et al, Appl. Phys. Lett. 126, 153502 (2025)

Pulse and noise power spectra

Status of the 3-wafer stack

- Holding structure: thermalization and mounting
- Reproducibility of the **electrical coupling**
- Reproduce the results of the unstacked wafers

Status of the 3-wafer stack

Stacked configuration with the 250 Kg lead castle shielding

Scalability for the 100mm mask: thick wafer

Assembly produced

Next steps:

- Series wafer production
- Lithography

Uniformity of wafer response to Americium source

Essentially same response to Am across the array

Uniformity of wafer response to Americium source

Noise after calibration (FS) @ low bias power

