Kinetic Inductance Detector with phonon-funneling volumes

Leonardo Pesce 02/07/2025 Ferrara, BULLKID-DM collaboration meeting

The concept of funneling volume

The concept of funnel

- Active sensor volume coincides V_{KID} coincides with the phonon collection volume V_f
- **Maximization** of *V* needed for energy resolution improvement

 $\sigma_E \propto 1/\sqrt{V}$

The concept of funnel

- Large collection separate structures surrounding the KID (Funnels)
- Funnels in AI + KID in AI-Ti-AI (from higher to lower Δ_0 to trap Quasi-Particles)

 $\sigma_E \propto \sqrt{V_{KID}} / V_f$

• Separation of V_f from V_{KID}

Arrays layout

- Two resonators tested
- Detuning responsivity and energy resolution compared

Arrays layout

Last results (Pisa meeting)

Results of calibration @ **HIGH power** ($a \sim 0.3$):

$$\frac{df}{dE} = (90.0 \pm 5.1) \text{ Hz/keV}$$
 $\frac{df}{dE} = (10.4 \pm 0.7) \text{ Hz/keV}$

 $\sigma_N = (18.5 \pm 0.2)$ Hz $\sigma_N = (3.34 \pm 0.04)$ Hz

 $\sigma_E = (206 \pm 12) \, \text{eV}$

$$\sigma_E = (321 \pm 22) \text{ eV}$$

Measurements and results

What we changed from the last test

- We increased the funnels' thickness (60 → 100 nm) →
 How does the responsivity change ?
- We passed from USRP to NIXA → Smaller noise by the electronic chain
- Lateral fibers connected to LANTERN
- Different holder.

Resonance Circle: KID-FUNNEL

$f_0 \approx 968.6 \text{ MHz}$	$Q_c \approx 19 \mathrm{k}$	$Q \approx 10 \mathrm{k}$
---------------------------------	-----------------------------	---------------------------

Resonance Circle: KID-NO-FUNNEL

$$f_0 \approx 1029.0 \text{ MHz}$$
 $Q_c \approx 20 \text{k}$ $Q \approx 19 \text{k}$

Resonance Circle: a comparison

	KID-FUNNEL old	KID-NO-FUNNEL old	KID-FUNNEL new	KID-NO-FUNNEL new
f_r [MHz]	964.9	1029.2	968.6	1029.0
$Q_c[k]$	11	23	19	20
$Q_i[M]$	0.01	0.35	0.02	0.41
Q[k]	6	22	10	19

- **KID-FUNNEL new** has slightly higher Q_c and similar f_r
- **KID-NO-FUNNEL new** has the same parameters
- Q_i of the resonator still low ($Q_i < 0.5 \text{ M}$)

Optical Calibration: detuning responsivity

$$\frac{df_r}{dE} = \frac{\eta}{V_{KID}\Delta_0^2} \frac{\alpha S_2(\omega, T)f_r}{4N_0}$$

 $\eta \propto V_f/V_{sub}$

- η = Energy to QP conversion efficiency
- $\alpha = \frac{L_k}{L_g + L_k}$ Fraction of Kinetic Inductance

•
$$\Delta_0 =$$
 Superconducting gap

Optical Calibration: results ($a \sim 0.4$ **)**

Temperature scan: Mattis-Bardeen theory

• With Mattis-Bardeen theory, α and Δ_0 measured from relative resonance frequency shift in temperature T $\delta n_{an} = \sqrt{2\pi k_B T} e^{-\Delta/k_B T}$

 $\frac{\Delta f(T)}{f_0(T)} = -\frac{\alpha}{2} S_2(\Delta_0, T) \frac{\delta n_{qp}(\Delta_0, T)}{\Delta(\Delta_0, T)}$ $S_2 \approx 1 + \left(\sqrt{\frac{2\Delta_0}{\pi k_B T}} e^{-\frac{hf_0}{2k_B T}}\right) J_0(\frac{hf_0}{2k_B T}) \qquad \Delta = \Delta_0 e^{-\sqrt{\frac{2\pi k_B T}{\Delta_0}}} e^{-\frac{\Lambda_0}{k_B T}} \approx \Delta_0$

Temperature scan: results

• $\Delta_0 \approx 120 \,\mu\text{eV}$ measured directly for AlTiAl from transition of the feed-line

	KID-FUNNEL old	KID-NO-FUNNEL old	KID-FUNNEL new	KID-NO-FUNNEL new
$\frac{df}{dE}$ [Hz/keV]	90.0	10.4	64.7	9.8
$\sigma_E \; [\mathrm{eV}]$	206	321	69	164
$\sigma_N[{ m Hz}]$	18.54	3.34	4.44	1.60
α [%]	7.9	5.8	6.4	4.4
$\Delta_0 \ [\mu eV]$	102.8	103.7	103.6	104.7

For **KID-FUNNEL**:

- The **responsivity decreased** with thicker funnels (but operated at different asymmetry configurations)
- Noise **improved** (different chain) \rightarrow Not a direct comparision

	KID-FUNNEL old	KID-NO-FUNNEL old	KID-FUNNEL new	KID-NO-FUNNEL new
$\frac{df}{dE}$ [Hz/keV]	90.0	10.4	64.7	9.8
$\sigma_E \; [\mathrm{eV}]$	206	321	69	164
$\sigma_N[{ m Hz}]$	18.54	3.34	4.44	1.60
α [%]	7.9	5.8	6.4	4.4
$\Delta_0 \ [\mu eV]$	102.8	103.7	103.6	104.7

For **KID-FUNNEL**:

- **Reduction** of α
- Δ_0 is **similar** \rightarrow Similar T_c estimated

	KID-FUNNEL old	KID-NO-FUNNEL old	KID-FUNNEL new	KID-NO-FUNNEL new
$\frac{df}{dE}$ [Hz/keV]	90.0	10.4	64.7	9.8
$\sigma_E \; [\mathrm{eV}]$	206	321	69	164
$\sigma_N[{ m Hz}]$	18.54	3.34	4.44	1.60
α [%]	7.9	5.8	6.4	4.4
$\Delta_0 \ [\mu eV]$	102.8	103.7	103.6	104.7

For **KID-NO-FUNNEL**:

- The **responsivities** are compatible \rightarrow Same resonator geometry
- Noise **improved** (different chain) \rightarrow Not a direct comparision

	KID-FUNNEL old	KID-NO-FUNNEL old	KID-FUNNEL new	KID-NO-FUNNEL new
$\frac{df}{dE}$ [Hz/keV]	90.0	10.4	64.7	9.8
$\sigma_E \; [\mathrm{eV}]$	206	321	69	164
σ_N [Hz]	18.54	3.34	4.44	1.60
α [%]	7.9	5.8	6.4	4.4
$\Delta_0 \ [\mu eV]$	102.8	103.7	103.6	104.7

For **KID-NO-FUNNEL**:

- Similar $\Delta_0 \rightarrow \text{Same } T_c$
- **Reduction** of α (not expected)

Collection efficiency ratio (an estimate)

- From responsivity ratio we find the **collection efficiency ratio** $\frac{\eta_1}{\eta_2}$ of two KIDs
- Assumption: assume S_2 and N_0 equal in all the compared KIDs

$$\frac{\eta_1}{\eta_2} \approx \frac{\left(\frac{df}{dE}\right)_1}{\left(\frac{df}{dE}\right)_2} \times \frac{\alpha_2}{\alpha_1} \times \left(\frac{\Delta_{0,1}}{\Delta_{0,2}}\right)^2 \times \frac{f_{r,2}}{f_{r,1}}$$

• The ratio of the two functions $\Delta f_r/f_r$ might also be sensible to the ratio of the two S_2 functions

Collection efficiency ratio: results

	F/NF old	F/NF new	F old/F new	NF old/NF new
η_1/η_2	6.7	4.7	1.1	0.8

 $F \rightarrow FUNNEL$ NF \rightarrow NO-FUNNEL

- Collection efficiency not significantly changed if we assume no change in $S_2 \rightarrow$ Reduction of responsivity due to reduction of α
- In all cases, FUNNEL-KID collects more phonons
- The collection efficiency became smaller for the new **KID-NO-FUNNEL** \rightarrow Still reduction of α

Next steps

Funnel and KID with no gap difference

- Same resonator in AI and no gap difference from funnels to meander
- No funneling effect should be seen
- Some problems with these arrays to be studied now

Conclusions and perspectives

- From these measurement
- 1. We observed a change in responsivity $\rightarrow \alpha$ changed for both the resonators
- 2. FUNNEL-KID has **stable** and **better performances**
- What's next
- 1. Conclusion of analysis with only Aluminum resonator \rightarrow To prove funneling effect
- Test the old KID-FUNNEL resonators with NIXA at same power of the new resonators → Same noise from electronic chain
- 3. Comparision with a BULLKID resonator and higher $Q \rightarrow$ Same contact surfaces

Thanks for the attention !

*This work was partially supported through the European Research Council through the Consolidator Grant **DANAE** number 101077663

BACK-UP SLIDES

Energy resolution

Optical calibration: Low Power (DS7401)

Responsivity & noise AlTiAl: High vs Low

- Responsivity reduces increasing the power for KID-FUNNEL
- Responsivity increases for KID-NO-FUNNEL

 Noise resolution increases in both cases

New KIDs: power scan (signal and noise)

New KIDs: SNR

- Optimal power chosen at $a \sim 0.4$
- Different behavior than Aluminum:
- 1. The signal for KID-FUNNEL
- 2. Higher optimal power

Optical Calibration: three fibers

KID-FUNNEL

KID-NO-FUNNEL

- Three fibers on the backward of the resonators
- Sensible to geometry effects
- Lateral Fibers: LANTERN + Central Fiber: EXTERNAL LANTERN

Optical Calibration: geometry effects

- Responsivity and noise depends on the fiber → KIDs identification
- Better performances for **KID-FUNNEL** in (almost) all the tile

Temperature scan old: results

Temperature scan: new vs old (FUNNEL)

Temperature scan test: KID-funnel comparision

Temperature scan: new vs old (NO-FUNNEL)

Temperature scan ratio

• From the responsivity ratio:

$$r_{f} = \frac{\left(\frac{df}{dE}\right)_{F}}{\left(\frac{df}{dE}\right)_{NF}} = \frac{\eta_{F}}{\eta_{NF}} \frac{f_{F}}{f_{NF}} \frac{\alpha_{F}}{\alpha_{NF}} \left(\frac{\Delta_{0,NF}}{\Delta_{0,F}}\right)^{2} \frac{N_{0,NF}}{N_{0,F}} \frac{S_{2,F}}{S_{2,NF}} = \frac{\eta_{F}}{\eta_{NF}} \frac{f_{NF}}{f_{F}} A$$

• Frome the T-scan ratio we get:

$$R_T = \frac{\left(\frac{\Delta f}{f}\right)_F}{\left(\frac{\Delta f}{f}\right)_{NF}} \approx A \frac{N_{0,F}}{N_{0,NF}} \left(\frac{\Delta_{0,F}}{\Delta_{0,NF}}\right)^{\frac{3}{2}} e^{\Delta_{0,NF} - \Delta_{0,F}/k_B T} = C e^{\delta \Delta/k_B T}$$

• From $R_T \to C$ and $\delta \Delta \to \Delta_{0,F} \to A \to \eta_F / \eta_{NF}$ (assuming $N_{0,NF} \approx N_{0,F}$)

Temperature scan ratio: the study

• ASSUMPTIONS (I): Δ_0 assumed constant (small variations) $\rightarrow n_{qp} \sim \sqrt{T} e^{-\Delta_0/k_B T}$

Temperature scan ratio: the study

• ASSUMPTIONS (II): S_2 taken constant at low temperature (T = 30 mK)

Temperature scan ratio: expectations

 $\delta \Delta < 0$

Temperature scan ratio: preliminary results

OLD RESONATORS

NEW RESONATORS

Temperature scan ratio: preliminary results

	С	δΔ [μeV]	A	η_F/η_{NF}	η_F/η_{NF} with S_2 equal
NEW	0.46	24.22	0.83	8.39	4.7
OLD	0.58	17.17	0.94	9.85	6.7
NEW	0.46	24.22	0.65	10.81	//
OLD	0.58	17.17	0.72	12.75	//

- $\Delta_{0,NF}$ inferred from the T- scan fit
- $\Delta_{0,NF}$ measured from the feed-line transition
- In both cases, a correction of a factor 1.7-1.5 is seen → Can this be the correction of the S₂ ratio ?

Temperature scan ratio: preliminary results

	С	δΔ [μeV]	A	${oldsymbol{\eta}_F}/{oldsymbol{\eta}_{NF}}$	η_F/η_{NF} with S_2 equal
NEW	0.46	24.22	0.83	8.39	4.7
OLD	0.58	17.17	0.94	9.85	6.7
NEW	0.46	24.22	0.65	10.81	//
OLD	0.58	17.17	0.72	12.75	//

- The method seems consistent despite systematic effects to be evaluated
- To do for OLD vs NEW KID-FUNNEL to better understand the change of responsivity \rightarrow Not only reduction of α but of S_2 , too ?

Resonance Circles: KID-FUNNEL AI (low power)

Resonance Circles: KID-NO-FUNNEL AI (low power)

Resonance Circles: comparision

	KID-FUNNEL AI	KID-NO-FUNNEL AI	KID-FUNNEL new	KID-NO-FUNNEL new
f_r [MHz]	1037.4	1029.2	968.6	1029.0
$Q_c[k]$	11	28	19	20
$Q_i[M]$	4.35	0.64	0.02	0.41
Q[k]	11	27	10	19

- f_r for **KID-NO-FUNNEL AI** matches **SONNET simulation**
- *Q_c* patterns are **consistent** (smaller for KID-FUNNEL AI)
- Why *Q_i* is higher for KID-FUNNEL in this case ?

Resonance Circles: KID-FUNNEL AI (High power)

Resonance Circles: KID-NO-FUNNEL AI (High power)

• Distortion of the resonance circles at optimal power

AI Funnel KID: preliminary results

- Preliminary calibration at LOW power seem to confirm the absence of funneling effect
- Some problems with these arrays to be studied now (unstable behavior at HIGH power, hard identification of the resonators)

AI KIDs: temperature scan

• $\Delta_0 \approx 186 \,\mu\text{eV}$ measured directly for AI from transition of the feed-line

Al vs AITIAI comparision @ Low power: preliminary

	AITIAI KID- FUNNEL new	AITIAI KID-NO- FUNNEL new	AI KID-FUNNEL	AI KID-NO-FUNNEL
$\frac{df}{dE}$ [Hz/keV]	129	4.86	13.8	22.4
$\sigma_E \; [\mathrm{eV}]$	336	806	117.2	74.5
$\sigma_N[{ m Hz}]$	43.4	3.9	1.6	1.7
α [%]	6.4	4.4	3.4	2.37
$\Delta_0 \ [\mu eV]$	103.6	104.7	190.3	193.5

• To check

Al funnels: noise

-90 **-**K-2 HIGH - NO-FUNNEL CalibratedPhase [dBc/Hz] CalibratedDetuning [Hz2/Hz] 50 -10040 -11030 -12020K-1 LOW - FUNNEL -130 K-1 LOW - FUNNEL K-2 LOW - NO-FUN 10-140 K-1 HIGH - FUNNEL K-1 HIGH - FUNNE K-2 HIGH - NO-FUNNEL -150 -10 10^{2} 10^{2} 10^{3} 10^{4} 10^{5} 10^{3} 10^{4} 10^{5} Frequency [Hz] Frequency [Hz] CalibratedMagnitude [dBc/Hz] CalibratedPhase @CalibratedMagnitude [%] 100 -1108 -12060 -13040 -14020-150 10^{2} 10^{3} 10^{4} 10^{5} 10^{2} 10^{3} 10^{5} 10^{4} Frequency [Hz] Frequency [Hz]

K-2 LOW - NO-FUNNEL

SONNET simulation: currents

No current flowing into the funnels at resonance