

Analysis model for $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ analysis

VALERIO IPPOLITO

Università di Roma "La Sapienza" INFN Sezione di Roma / CERN

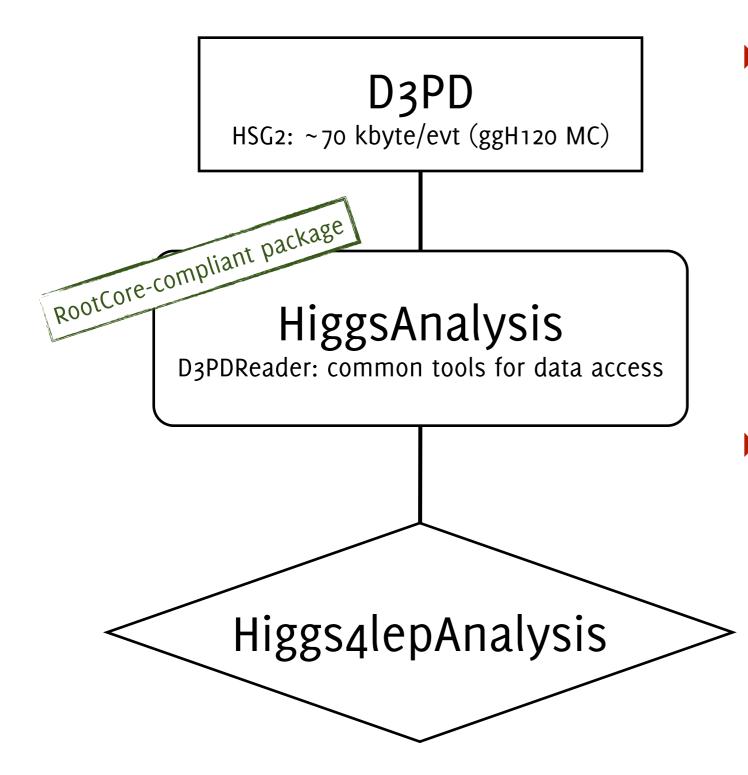
Outline

- ► $H \rightarrow ZZ(*) \rightarrow 4\ell$: a challenging analysis
 - what we want and what we have
- HiggsAnalysis / Higgs4lepAnalysis
 - code structure and analysis model
- dealing with the GRID
- performance and improvements
- conclusions

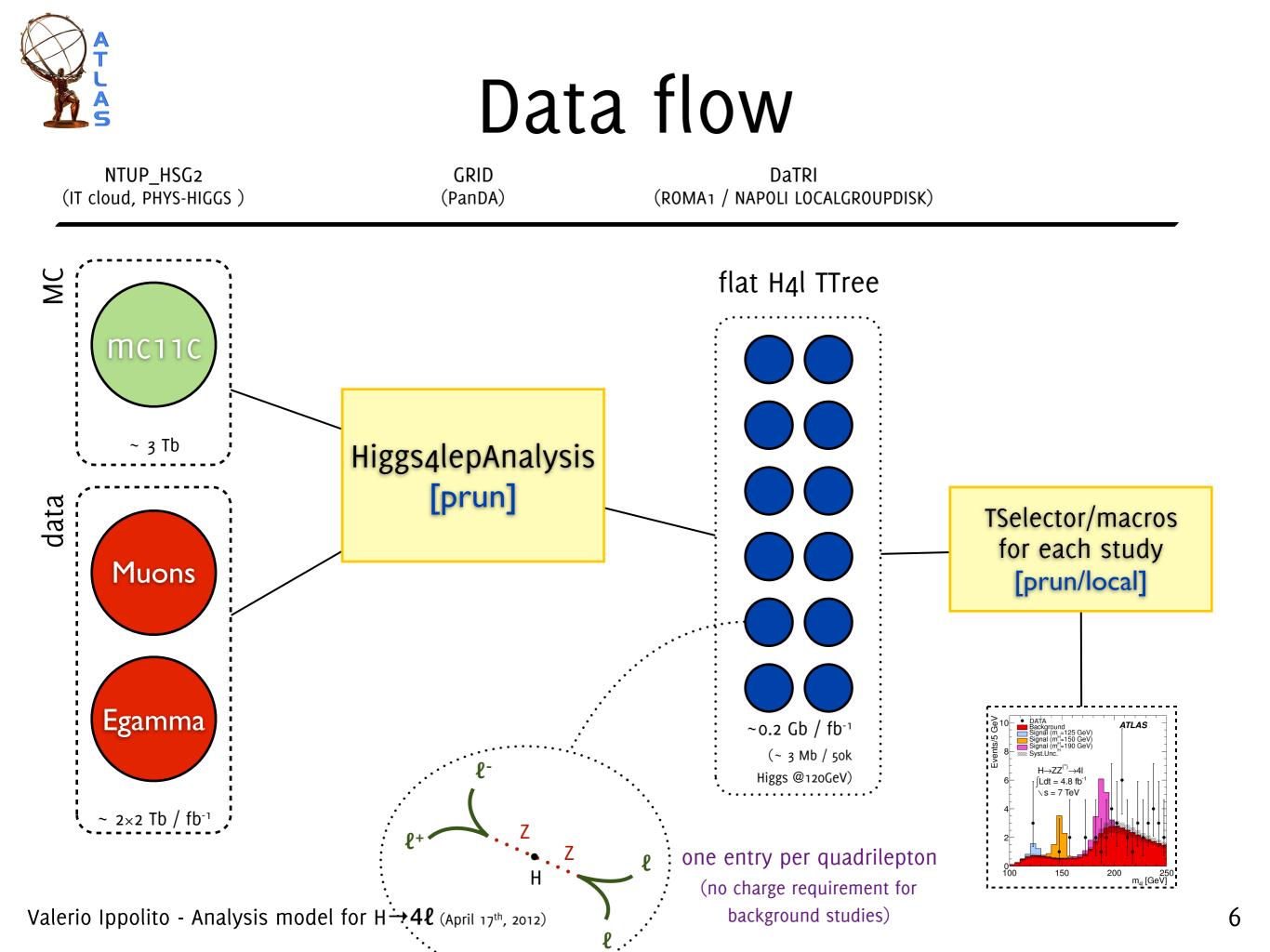
What we want to do

► $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ is one of the leading analyses for 2012

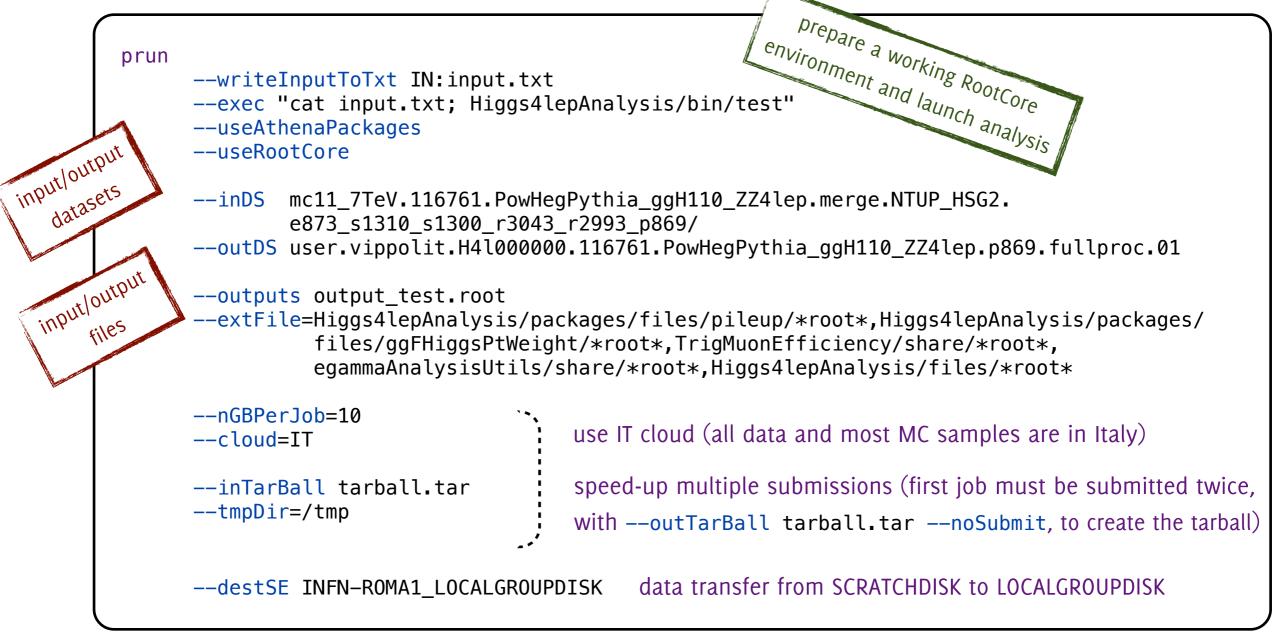
- we need to have an immediate feedback as soon as new data is collected
- many common tasks need to be performed
 - candidate reconstruction ("main analysis")
 - reducible background estimation from control regions ("relaxed selection")
- data analysis must be quick
 - try to build an ntuple reliable for both main and relaxed selections
 - make sure a quick common framework is nevertheless available for detailed studies



How we do it


- we run over HSG2 D3PDs
 - previously we produced an intermediate object-oriented ntuple (ZNtuple)
 - it was not affordable anymore (processing speed, data transfer)
- D3PDs are subscribed to PHYS-HIGGS disks in ROMA1 and NAPOLI
 - running via grid we profit from resources reserved to IT-cloud users
- D3PDs are "light A0Ds"
 - all informations we need are there
 - we build interesting objects (e.g. quadrileptons) and we use them in the analysis
 - in this way plotting and downstream studies are quick (we run on tiny minimal ntuples)

Code structure


- HiggsAnalysis
 - common framework to read D3PDs
 - uses <u>D3PDReader</u> to improve reading performance
 - robust against different D3PD tags (e.g. missing variables)
- Higgs4lepAnalysis
 - inherits from HiggsAnalysis
 - implements <u>Summer2012</u> selection
 - produces a common light ntuple covering most studies

Grid submission

We use PanDA via prun (launch jobs from a full Athena+RootCore <u>setup</u> via CVMFS):

Job monitoring on PanDa monitor website

(Or try python /afs/cern.ch/user/j/jha/public/Atlas/Panda/latest/panda_task.py --server --showPandaID --outDS=XXX)

Performance

We performed a test run over all the available mc11c samples and the full 2011 data sample (both <u>data</u> and <u>MC</u> samples are fully replicated in the IT cloud)

Monte Carlo

- * running over 106 signal and background samples
- * ~ 300 jobs [just 1 subjob per sample, except Z+jet, JF17]
- * submission takes ~2 h
- * each subjob takes ~5' to run (locally we process signal at > 1 kHz)

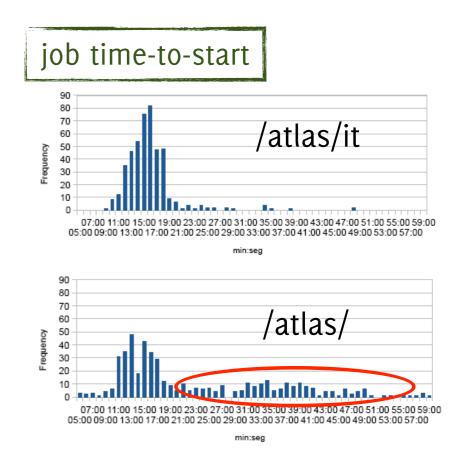
overall MC processing time is 2h30'

data

- * two big jobs (~900 subjobs each) on Egamma and Muons streams
 * submission takes ~ 1h
 - * each subjob takes less than 30' to run

overall processing time is 4h30' (after MC! priority for data is from 830 to 630...)

~7 h for a single user to process everything!


Finalizing the analysis

- subntuple production is done once for all
 - integrate with new collected data
 - re-run if changes in main analysis (e.g. selections, corrections/calibrations) are introduced
- downstream studies rely on this output
 - candidate reconstruction and limit ("the final plot")
 - selection optimizations (cut-based, MVA, mass resolution studies)
 - background studies (Z+μμ)
- subntuple size is ~2.5 Gb (0.5 Gb for MC)
 - run on the grid with simple TSelector via prun (or locally)

What did we gain?

- we switched from ZNtuple to D3PD
 - direct access to all needed variables
 - no need to transfer huge ntuples (1/10 of D3PD size: ~7 days for 5 fb⁻¹...)
 - D3PDReader allows a quick analysis reading only branches actually needed (>1 kHz, even more with TTreeCache)
- we have PHYS-HIGGS disks in ROMA1 and NAPOLI
 - GRID jobs profit from resources reserved to /atlas/it users (average time-to-start is ~30% shorter with much less tails)
 - in ~7 h a single user can analyze 5 fb⁻¹ of data plus MC

What did we gain / 2

	before	after
data/MC location	worldwide	IT cloud
ntuple size	~ Tb	~ Gb
signal MC processing time	10 min / 50k evts	50 s / 50k evts
GRID time (MC⊕2011 data)	~ 1 day	~ 1/2 day
data transfer to IT cloud	~ 1 week	already on SCRATCHDISK

from a physics point of view:

- almost instantaneous signal MC studies

(acceptance challenge, resolution, optimizations...)

- quick framework to analyze real data (data-driven background studies - Z+µµ, Z+ee, ttbar)
- constantly run on new data in 2012 (monitor D3PDs replication to stay tuned with production)

Valerio Ippolito - Analysis model for $H \rightarrow 4\ell$ (April 17th, 2012)

Conclusions

- $H \rightarrow ZZ(*) \rightarrow 4\ell$ is a demanding analysis
 - results need to be updated on daily basis
 - this is possible only with a robust and responsive analysis framework
- HiggsAnalysis+Higgs4lepAnalysis model does the job
 - common structure using D3PDReader to read D3PDs
 - well structured code: final analysis relies on small candidate-wise ntuples reliable for background studies as well
- D3PDs are replicated to PHYS-HIGGS disk in the IT cloud
 - shorter job time-to-start, access reserved resources
 - full 2011 analysis can be performed in almost half a day
 - of course we can't have every space token in Italy, but replicating jobs' output to localgroupdisks grants high GRID performances!