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Zone refining
• Zone refining (or zone melting) was invented in the Early 

50’s by  J.D. Bernal and developed by W.G. Pfann in Bells 
Laboratories to prepare high-purity materials (mainly 
semiconductors) 

• A narrow region of a crystal is melted, and this molten 
zone is moved through the crystal. The molten region 
melts impure solid at its forward edge and leaves a wake 
of purer material solidified behind it as it moves through 
the ingot.

The Journal of The Minerals, Metals & Materials Society 4, 747 (1952)



Impurities tend to 
remain preferably (but 
not always!) in the liquid  
zone and thus are 
dragged from tip to tail. 

The procedure can be 
repeated many times to 
increase the purity of 
the ingot.

After cutting the tail we 
remain with a purified 
ingot.

Molten zone

Oven
Quartz ampoule



After solidification in the interface between 
liquid and solid a fraction k (coefficient of 
segregation) of impurities contained in the 
liquid remain in the solid 

𝐶𝑆 = 𝑘𝐶𝐿

where Cs (CL) is the concentration of pollutant 
per volume unit in the solid (liquid). 

If k<1 (k>1) the pollutant remains preferably in 
the molten (frozen) zone.



Theory of zone refining

𝑤𝑆𝑑𝐶𝐿 =
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Variation of solute in the molten zone

−𝐶𝑠 𝑥 𝑆𝑑𝑥

Solute entering in the freezing zone

+ 𝐶𝑠 𝑥 + 𝑤 𝑆𝑑𝑥
Solute entering in the molten zone



Previous equation is valid only if the pollutant diffuses uniformly in the molten zone. 
The effective segregation coefficient in the process is given by 

with V=moving rate of the oven, D=diffusion coefficient, =thickness of the diffusion 
boundary layer (fraction of mm). Diffusion coefficient in molten salts is usually       
O(10-5 cm2/s). If V<D/ ~ mm/h we have keff➝k. Convection due to temperature 
gradient and Marangoni convection can contribute to diffusion.

𝑘eff =
𝑘

𝑘 + 1 − 𝑘 exp −
𝑉𝛿
𝐷

𝑑𝐶𝑆(𝑥) = 𝑘𝑑𝐶𝐿(𝑥)

and thus
𝑑𝐶𝑆,after(𝑥)

𝑑𝑥
=
𝑘

𝑤
𝐶𝑆,before 𝑥 + 𝑤 − 𝐶𝑆,after(𝑥)

Remembering that at point x the variation of the solute entering in the freezing zone is  



Tail zone: when the oven reaches and overcomes the end of ingot, the equation is 
different 

𝑆𝑑 (𝐿 − 𝑥)𝐶𝐿 = −𝐶𝑠 𝑥 𝑆𝑑𝑥

Variation of solute in the molten zone = solute entering in the freezing zone
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Starting condition:  in the tip enters a fraction k of the average concentration of the 
molten zone
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න
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Recap: suppose to repeat the procedure n times. The equations to solve are

𝐶𝑛
′ 𝑥 =

𝑘

𝑤
𝐶𝑛−1 𝑥 + 𝑤 − 𝐶𝑛 𝑥 if 𝑥 ≤ 𝐿 − 𝑤

𝐶𝑛 𝑥 = 𝐶𝑛 𝐿 − 𝑤
𝐿 − 𝑥

𝑤

𝑘−1

if 𝐿 − 𝑤 < 𝑥 ≤ 𝐿

𝐶𝑛 0 =
𝑘

𝑤
න
0

𝑤

𝐶𝑛−1 𝑥 𝑑𝑥

We suppose that initially the ingot has a constant concentration C0(x)=C0. 
The functions fn(x)=Cn(x)/C0 follow the previous equations but with f0=1.



For f1(x) we have a simple analytic solution 

Anyway, for n>1 the equations must be solved through a numerical iterative procedure 

𝑓1 𝑥 = 1 − 1 − 𝑘 𝑒−
𝑘𝑥
𝑤 if 𝑥 ≤ 𝐿 − 𝑤

𝑓𝑛 0 =
𝑘

𝑤
෍
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𝑓𝑛−1 𝑥𝑖 Δ𝑥
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𝑘

𝑤
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𝑤
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Yes

No





The longer is the ampoule the better is!





Limit (“ultimate”) solution: repeating the procedure to infinity is useless. In fact, 
for increasing n a limiting solution is reached. For n➝∞ the equation become

this equation can be solved by an exponential

𝑓∞ 𝑥 = 𝐴𝑒𝐵𝑥/𝑤

B is the solution of the transcendent equation 𝐵 = 𝑘 𝑒𝐵 − 1 and A can be found 
imposing the conservation of the solute

1

𝐿
න
0

𝐿

𝑓∞ 𝑥 𝑑𝑥 = 1 ⟹ 𝐴 =
𝐵𝐿/𝑤

𝑒𝐵𝐿/𝑤 − 1

However, this is only an approximate solution since for x>L-w the solution is a 
power-law and not exponential!

𝑓∞
′ 𝑥 =

𝑘

𝑤
𝑓∞ 𝑥 + 𝑤 − 𝑓∞ 𝑥



x x+w

f∞(x+w) 
not an exponential



Geometry of the ampoule: the ampoule has a cone-shaped tip

we must take in account the varying cross section of the ampoule.  
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If V(x) is the volume of the molten zone and A(x) the cross section of the ampoule at the 
left side, the equation become 

After a little algebra we obtain the corrected equation

𝑑 𝑉(𝑥)𝐶𝐿 = 𝐶𝑠 𝑥 + 𝑤 𝑆𝑑𝑥 − 𝐶𝑠 𝑥 𝐴(𝑥)𝑑𝑥

𝐶𝑛
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𝑥2
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Notice that previous equation can be generalized  to any geometry of the ampoule. The 
most general equation is

𝐶𝑛
′ 𝑥 𝑉 𝑥 = 𝑘 𝐶𝑛−1 𝑥 + 𝑤 𝐴 𝑥 + 𝑤 − 𝐶𝑛 𝑥 𝐴 𝑥 − 𝐶𝑛 𝑥 𝐴 𝑥 + 𝑤 − 𝐴 𝑥

where A(x) is the cross section of the ampoule at the point x and V(x) the volume of the 
molten zone:

𝑉 𝑥 = න
𝑥

𝑥+𝑤

𝐴 𝑥 𝑑𝑥

and the starting condition

𝐶𝑛 0 =
1

𝑉(0)
න
0

𝑤

𝐶𝑛−1 𝑥 𝐴 𝑥 𝑑𝑥

This equation includes also the tail, in which V(x) =S∙(L-x) and A(x+w)=0 if x>L-w.



Cutting the edge: after refining the tail of the ingot is cut away and the rest of the 
ingot is shuttered and recast in the final crystal  growth (normal freezing). The 
average contaminant concentration is a function of the cut

ҧ𝐶(𝑋) =
𝐶0
𝑋
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Application to SABRE: ultrapure NaI crystals are necessary to compete with DAMA/LIBRA

The purified (but raw) crystal is moved to 
Radiation Monitoring Device (Boston)

Final crystal is 
grown in vertical 
Bridgman method 
in fused silica 
vessels (normal 
freezing)

Radioclean NaI powder Astrograde by Sigma Aldrich 
(now Merck) is refined at Mellen company (Concord, NH) 

For each run 5 samples from ingot are taken at the position in figure 
and shipped at LSC (Canfranc) and Seastar for analysis

1’’

#2 #3 #4 #5Zone #1





ZR Run 1 (26 passes, 1.5 inch/h, ampoule with Carbon coating, powder: 76650)

Sample 39K
[ppb]

65Cu
[ppb]

85Rb
[ppb]

133Cs
[ppb]

138Ba
[ppb]

88Sr
[ppb]

208Pb
[ppb]

LSC Seast LSC Seast LSC Seast LSC Seast LSC Seast Seast LNGS LSC LSC Seast LNGS
powder 14.4 6.7 <5 <4 <0.8 <0.4 11 19 <0.6 0.18 1 2 1.6

Zone #1 <4 <4 <5 <3 <0.8 <0.4 <0.3 <2 <0.5 <0.3 367 350 5.1 3.6

Zone #2 <4 <4 <5 <3 <0.8 <0.4 <0.3 <2 0.8 <0.3 287 180 93 2.6 2.9 2.5

Zone #3 6.7 <4 <5 <3 <0.8 <0.4 0.4 <2 0.8 <0.3 86 <1 1.8

Zone #4 40 6.3 <5 <3 <0.8 <0.4 0.4 <2 3.8 <0.3 41 20 <1 1.2 1.6

Zone #5 540 275 234 150 1.3 <0.4 447 570 10 3.7 10 4 4.7 1.9 0.95 0.9

The two main contaminants for the experiment are 40K and 210Pb 



Statistical analysis: in order to find the segregation constants k for the various 
contaminant previous data must be fitted with the ZR model discussed previously.

The fitting procedure procedure must face three problems

➢ The first zones present only upper limits due to the sensitivity of the procedure 
of measurement

➢ The measures are carried out on grains taken randomly in each zone after 
crunching. For this reason, the measures have a uniform uncertainty on the x 
position

➢ The error on the measures is unknown. We assume conservatively a 20% 
gaussian error on the measures (dominated by systematics) while for upper 
limits we assume a uniform probability for all values smaller that the limit

For these reasons, a maximum likelihood procedure is more appropriate for fitting 
rather than a 2.



Fitting procedure: we can write the likelihood function as 

𝐿 𝑘, 𝐶0 = 𝑃𝑟(𝐶0) ×ෑ

𝑧=1

5

𝒫𝑧 𝑘, 𝐶0

where 𝒫𝑧 are the probabilities in each zone and Pr is a prior. For zones in which we 
have a measure  Cz

exp

𝒫𝑧 𝑘, 𝐶0 ∝ න

𝑥𝑧−
𝛿𝑧
2

𝑥𝑧+
𝛿𝑧
2

exp −
𝐶𝑧
𝑒𝑥𝑝

− 𝐶0𝑓𝑛(𝑥)
2

2𝜎𝑧
2

𝑑𝑥

with xz and z central value and width of the z-th bin, z estimated error on the 
measure (we  fix z=0.2×Cz

exp) and n number of passes. We thus consider all the 
values x ∈[xz-½z,xz+½z] equiprobable.



For the zones in which we have only an upper bound Cz
bound we have:

a) If C0fn(x) > Cz
bound ∀ x ∈[xz-½z,xz+½z]  we put  𝒫𝑧 =0 since the theoretical values 

cannot be higher than the upper value
b) Conversely, if C0fn(x) < Cz

bound ∀ x ∈[xz-½ z,xz+½z] we have  𝒫𝑧 =1 since each value 
of x in the interval is equiprobable

c) If ∃ ∈[xz-½z,xz+½z] with C0fn() = Cz
bound we can consider only the fraction of bin in 

which the curve is below the bound. E.g., if fn(x) is increasing  𝒫𝑧=[ -(xz-½z)]/z

Cz
bound

xz

xz-½ z xz+½z

C0fn(x)

𝒫𝑧 =0

a)

xz

xz-½z xz+½z

C0fn(x)

𝒫𝑧 =1

b)

xz

xz- ½z xz+ ½z

C0fn(x)

𝒫𝑧 = [ -(xz-½z)]/z



c)



Finally, in order to avoid that the fitted value of C0 deviate too much from the value 
measured in the powder we multiply by a prior function

𝑃𝑟 𝐶0 = exp −
𝐶0 − 𝐶𝑝𝑜𝑤𝑑𝑒𝑟

2

2𝜎𝑝𝑜𝑤𝑑𝑒𝑟
2

(we  assume powder=0.2×Cpowder). 

We define the likelihood ratio function

𝜆 𝑘, 𝐶0 = −2log
𝐿 𝑘, 𝐶0

𝐿 ෠𝑘, መ𝐶0

were ෠𝑘 and Ĉ0 are the value that maximize the likelihood (best fit values). According to 
the Wilk’s theorem this function behaves approximatively like a 2.
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Excluding last bin doesn’t change too much the results…



Excluding last bin doesn’t change too much the results…
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Comparison with literature: we tried to reproduce the analysis done by Suerfu, 
Calaprice and Souza [Phys. Rev. Appl. 16, 014060, (2021)]. We can reproduce exactly 
their Fig. 4...

Suerfu et al.



…however, we cannot reproduce their results in Fig. 5! 
Table I

w/L=0.057?

0.08?



Anyway, using their data we found more or less the same best fit. We assume again a 
20% error on measure (in Suerfu et al. the error is not specified). We also assumed the 
“a posteriori” error quoted by Suerfu et al. on C0 (5.3% error).



Fig. 6 by Suerfu et al. vs our analysis. 
Notice that the scales are different

We cannot reproduce the analysis by Suerfu et al. due 
to lack of information on the analysis procedure and 
some incongruences  in their  figures. The errors on k
and C0 seem to be underestimated.

k=0.56±0.03 @ 1k=0.571±0.006 @ 1

1
Po

w
de

r

k=0.56±0.02 @ 1



Thank you for your attention

This work has been performed in collaboration with

• Gabriella Cataldi
• Samina Zuhra
• Sanagul Khattak
• Chemseddine Ananna
• Maria Luisa De Giorgi
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