Problematic channels in exclusive R and $(g-2)_{\mu} / 2$

Simon Eidelman

Budker Institute of Nuclear Physics RAS and Novosibirsk State University,

Novosibirsk, Russia

1. Missing channels

Outline

2. σ : Sum of intermediate channels vs. phase space
3. Interference
4. Isospin relations
5. Particular final states
6. Conclusions

General

- How realistic is our accuracy of $a_{\mu}^{\mathrm{LO}, \text { had }}$?
$a_{\mu}^{\mathrm{LO}, \mathrm{had}}=(692.3 \pm 1.4 \pm 3.1 \pm 2.4) \cdot 10^{-10}$, M. Davier et al., 2011
- A very serious and complicated issue is experimental systematics; another important issue is averaging and summing; radiative corrections; there are also other problems with the way we determine exclusive R
- Missing channels, sum of intermediate channels vs. phase space, interference effects, isospin relations

Missing channels

- The final states studied by now are: $m\left(\pi^{+} \pi^{-}\right) n \pi^{0}, m=1,2,3, n=0,1,2$, but less than 7π and not more than $2 \pi^{0}$, so $\pi^{+} \pi^{-} 3 \pi^{0}, \pi^{+} \pi^{-} 4 \pi^{0}$ have never been observed
- $K^{+} K^{-}, K_{S} K_{L}, K^{+} K^{-} \pi^{0}, K^{ \pm} K_{S} \pi^{\mp}, K^{+} K^{-} \pi^{+} \pi^{-}, K^{+} K^{-} \pi^{0} \pi^{0}, 2\left(K^{+} K^{-}\right)$, so $\pi^{+} \pi^{-} 3 \pi^{0}, \pi^{+} \pi^{-} 4 \pi^{0}, K^{0} \bar{K}^{0} \pi \pi$ have never been observed
- Channels with $\eta: \eta \pi^{+} \pi^{-}, \eta \pi^{+} \pi^{-} \pi^{0}, \eta K^{+} K^{-}$,
so $\eta+$ more pions (kaon pairs) or $\eta \eta+X$ have never been observed
- Radiative decays $\pi^{0} \gamma, \eta \gamma, \pi^{0} \pi^{0} \gamma, \pi^{0} \eta \gamma$ below 1.4 GeV ,
but none of these or other channels above 1.4 GeV ;
SND recently measured $e^{+} e^{-} \rightarrow \omega \pi^{0} \rightarrow \pi^{0} \pi^{0} \gamma$ up to 1 GeV

Intermediate mechanisms

- Production of any final state proceeds basically via quasi-two-body intermediate mechanisms, e.g., $e^{+} e^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}$can go via $e^{+} e^{-} \rightarrow a_{1}(1260)^{+} \pi^{-} \rightarrow \rho^{0} \pi^{+} \pi^{-} \rightarrow 2 \pi^{+} 2 \pi^{-}$
- The situation with 4π is much richer:
$a_{1}(1260)^{+} \pi^{-}, a_{2}(1320)^{+} \pi^{-}, \pi(1300)^{+} \pi^{-}, \rho^{0} f_{0}, \rho^{0} f_{2}(1270), \ldots$,
with subsequent decay of a resonance into $\rho \pi$ or 2π
- Each specific mechanism has its own angular and energy dependence, so the detection efficiency may be different between them and just phase space; the effect is smaller for ISR and grows when the solid angle is smaller
- The correct parameterization is $\frac{d \sigma}{d \Omega} \propto\left|\Sigma a_{i}\right|^{2}$
- Interference effects can be very large, even with narrow states, so the results should be presented as a set of complex numbers
- Multiple solutions!

Isospin relations

- For some of the missing channels, when there is no information on some of the charge combinations of the same final state, e.g., $\pi^{+} \pi^{-} 4 \pi^{0}$ from $2\left(\pi^{+} \pi^{-} \pi^{0}\right)$ and $3\left(\pi^{+} \pi^{-}\right)$
- The basic idea is to use Clebsch-Gordan (CG) coefficients from which, e.g., we learn that in $K^{* 0}$ decays $\Gamma\left(K^{ \pm} \pi^{\mp}\right) / \Gamma\left(K^{0} \pi^{0}\right)=2 / 1$
- Its application is limited because the CG idea assumes a pure isospin state.

This is not true for multi-body final states, e.g., for $K \bar{K} \pi$ even with
a single $K^{*} \bar{K}$ mechanism there is interference of two pure isospin amplitudes:
$a\left(K^{+} K^{-} \pi^{0}\right)=a\left(K^{*+}\left[K^{+} \pi^{0}\right] K^{-}\right)+a\left(K^{*-}\left[K^{-} \pi^{0}\right] K^{+}\right)$,
$a\left(K^{0} \bar{K}^{0} \pi^{0}\right)=a\left(K^{* 0}\left[K^{0} \pi^{0}\right] \bar{K}^{0}\right)+a\left(\bar{K}^{* 0}\left[\bar{K}^{0} \pi^{0}\right] K^{0}\right)$,
$a\left(K^{-} K^{0} \pi^{+}\right)=a\left(K^{* 0}\left[K^{-} \pi^{+}\right] K^{0}\right)+a\left(K^{*+}\left[K^{0} \pi^{+}\right] K^{-}\right)$,

- The situation is even more complicated when one adds $\phi \pi^{0}$
- Recent analysis of Davier et al., 2011 gives various relations for $K \bar{K} \pi$ and $K \bar{K} \pi \pi$ contributions to $a_{\mu}^{\mathrm{LO}, \text { had }}$, which are hardly correct (both interference with ϕ ignored and pure isospin states assumed)

Conclusions

- The contribution to $a_{\mu}^{\mathrm{LO}, \text { had }}$ from the range $\left(2 m_{\pi}-2\right) \mathrm{GeV}$ is $\approx(640 \pm 4) \cdot 10^{-10}$
- Missing radiative channels $\left(\pi^{0} \gamma, \eta \gamma, \pi^{0} \pi^{0} \gamma, \ldots\right.$ final states) can add 0.5 ± 0.5 to $a_{\mu}^{\mathrm{LO}, \text { had }}$
- Are there any exotic contributions like $7 \pi, 8 \pi, \eta \eta n \pi, \eta^{\prime}+X$?
- Various intermediate mechanisms with differing detection efficiency can change σ by 1.5 ± 1.5 (two 4π channels), technically long account of interference effects
- Contributions based on isospin relations can change σ by 2 ± 2 coming from $K \bar{K} n \pi, 6 \pi$
- In total, 4 ± 4, i.e., a serious effect for the cross section and its systematic uncertainty, but how realistic?
- A lot of tedious additional work in experiment/theory!

