$(g-2)_{\mu}$: Scope for improvement – role of various channels

THOMAS TEUBNER

[Numbers as of HLMNT '11, J. Phys. G 38 (2011) 085003]

$(g-2)_{\mu}$: Hadronic contributions

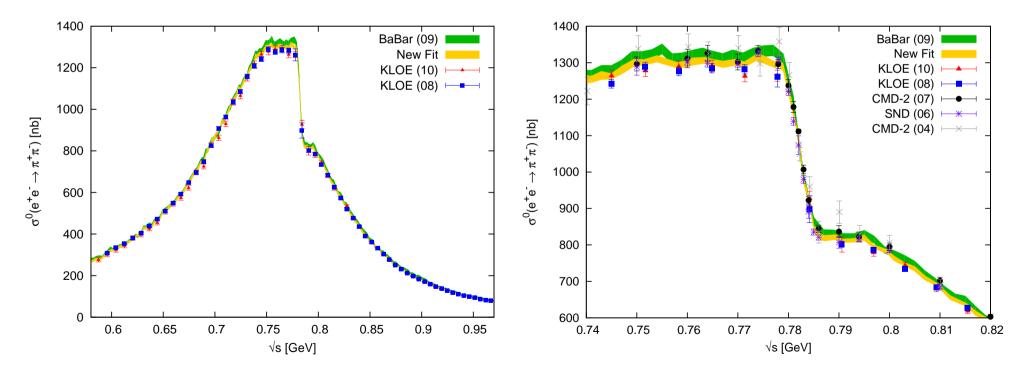
▶ Hadronic Vacuum Polarisation from exp. $\sigma(e^+e^- \rightarrow \gamma^* \rightarrow hadrons(+\gamma))$ data

[or from $\tau \rightarrow \nu_{\tau} + hadrons$ spectral functions; isospin breaking...]

Use of dispersion integral (based on analyticity and unitarity):

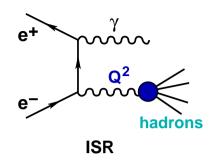
 $a_{\mu}^{\text{had,VP LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.4 \dots 1)$

- \rightarrow Kernel $K \rightsquigarrow$ weighting towards smallest energies. σ_{had}^0 the undressed cross section
- \rightarrow Similar approach with different kernel functions for NLO VP contributions $a_{\mu}^{\mathrm{had,VP~NLO}}$
- ► Hadronic Light-by-Light:
- No dispersion relation. *First Principles* calculations from lattice QCD are underway...
- Also first results based on Dyson-Schwinger eqs. by C. Fischer et al.
- 'Consensus' of different recent model calculations. HLMNT numbers below use compilation from J. Prades, E. de Rafael, A. Vainshtein: $a_{\mu}^{
 m L-by-L} = (10.5 \pm 2.6) \cdot 10^{-10}$


- Compatible result from F. Jegerlehner, A. Nyffeler: $a_{\mu}^{
m L-by-L} = (11.6 \pm 4.0) \cdot 10^{-10}$

Hadronic VP contributions

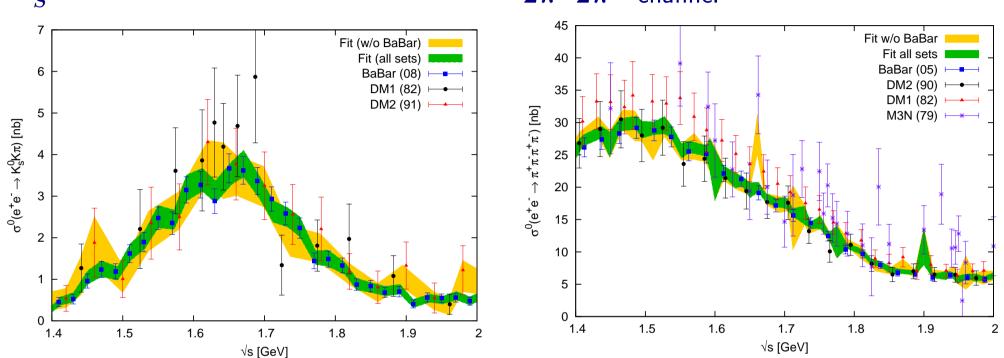
- For low energy $\sigma_{had}^0(s)$, need to sum ~ 25 exclusive channels $[2\pi, 3\pi, KK, 4\pi, \ldots]$
- $\sqrt{s} \sim 1.4 2$ GeV: sum exclusive channels and/or use old inclusive data
- above ~ 2 GeV: inclusive data or use of perturbative QCD [+narrow resonances]


The most important 2π channel (> 70%)

HLMNT '11 use 879 data points; needed!?

Overall, the data combination incl. 'Direct Scan' and 'Radiative Return' looks fine, but...

Radiative Return $\pi\pi(\gamma)$ data [KLOE 08/10 and BaBar 09] compared to combination of all

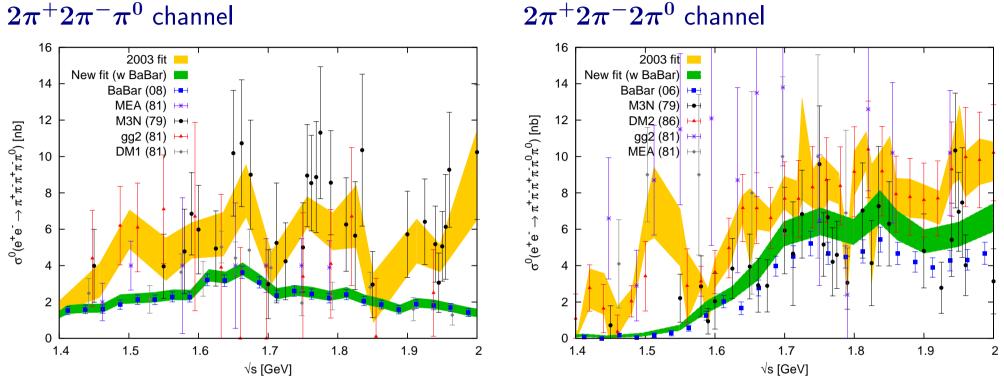

- \rightarrow Radiative Return (at fixed e^+e^- energy) a powerful method, *complementary to direct energy scan*
- → Differences in shape and BaBar high at medium and higher energies
- → limited gain in accuracy due to 'tension'; pull-up (mainly from BaBar)

0.08 New Fit **BaBar** (09) New Fit (local χ^2 inf) 0.06 KI OF (08) (σ_{RadRet} Sets - σ_{Fit})/σ_{Fit} 0.04 0.02 -0.02 -0.04 -0.06 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 √s [GeV]

- Comb. of all data on same footing, before integration (purple band): still good $\chi^2_{\rm min}/{\rm d.o.f.} \sim 1.5$ of fit
- a^{2π}_μ(0.32 − 2 GeV) = (504.2 ± 3.0) · 10⁻¹⁰, a^{2π,w/outRad. Ret.} = (498.7 ± 3.3) · 10⁻¹⁰
 → Pull-up of a_μ from Rad. Ret. by ~ 5.5; and: comp. w. DHMZ: Their a^{2π}_μ is higher by about 2.1 units.
- Clarification/improvement with more, possibly even more precise data (from both scan and ISR) needed!

Normalised difference of cross sections [HLMNT '11]

Region below 2 GeV: impact of recent BaBar Rad. Ret. analyses

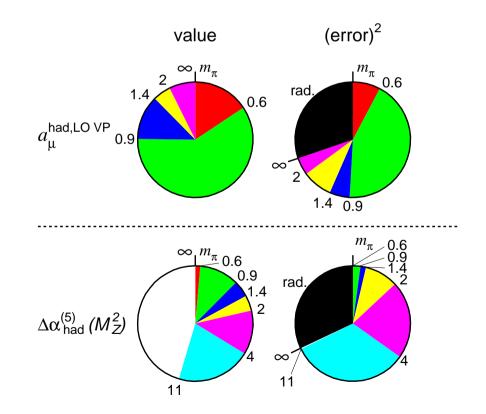

 $K^0_S K \pi$ channel

 $2\pi^+2\pi^-$ channel

 \rightarrow Big improvements over earlier data compilations in many channels.

BaBar Radiative Return data lower than less precise older data in most channels.

Region below 2 GeV: impact of recent BaBar Rad. Ret. analyses (contd.)


 $2\pi^+2\pi^-2\pi^0$ channel

 \rightarrow Error 'inflation' needed when data inconsistent,

e.g. BaBar lower than previous measurements in $2\pi^+2\pi^-2\pi^0$ channel: \rightarrow HLMNT: Errors for g-2 inflated by local $\sqrt{\chi^2_{\min}/d.o.f.}$ [global $\chi^2_{\min}/d.o.f. = 4$]

Future improvements: energy regions; experiments

- \blacktriangleright New g 2 experiments at Fermilab and J-PARC.
- ► Will a_{μ}^{SM} match the planned accuracy? \rightsquigarrow L-by-L may become the limiting factor. But at present Hadronic VP still contributes the biggest error in a_{μ}^{SM} .
- \blacktriangleright Contributions from energy regions: Pie diagrams for contr. to a_{μ} and $\alpha(M_Z)$ and their errors²
- \rightarrow Expected sources for new data:
- More Rad. Ret. in progress at KLOE
- Great opportunity for KLOE-2, BELLE, Super τ – c, in a few years SUPER-Bs, also strong case for DAFNE-HE
- Big improvement envisaged with CMD-3 and SND at VEPP2000
- Higher energies: BES-III at BEPCII in Beijing is on; KEDR at VEPP-4M

Importance of various 'channels'

'Higher multiplicity' region from 1.4 to 2 GeV

with use of isospin relations for some channels:

• Errors contributions to a_{μ} from leading and subleading channels (ordered) up to 2 GeV

Purely from data:

channel	error	[Use of old inclusive data disfavoured.]	
$\pi^+\pi^-$	3.09		
$\pi^+\pi^-\pi^0\pi^0$	1.26	Channe	el contr. \pm error
3π	0.99	$\overline{K}\overline{K}2\pi$	π 3.31 ± 0.58
$2\pi^+2\pi^-$	0.47	$\pi^+\pi^-4i$	$\pi^0 0.28 \pm 0.28$
K^+K^-	0.46	$\eta\pi^+\pi^-$	$-$ 0.98 \pm 0.24
$2\pi^+ 2\pi^- 2\pi^0$	0.24	$K ar{K} \pi$	2.77 ± 0.15
$K^0_S K^0_L$	0.16	$2\pi^{+}2\pi^{-}$	$\pi^0 1.20 \pm 0.10$

• 'Inclusive' region from 2 to $\sim 11~{\rm GeV}$: 41.19 \pm 0.82

Can be 'squeezed' by using pQCD (done by DHMZ from 1.8 GeV); region from 2 to 2.6 GeV: $15.69 \pm 0.63 \rightarrow 14.49 \pm 0.13$, only small changes for higher energies.

- $J/\psi+\psi'$: 7.80 ± 0.16
- Note: All these errors are smaller than the difference 'with vs. w/out Rad. Ret.'
- Differences between HLMNT and DHMZ mostly cancel in the sum of channels, but are sizeable particularly in 2π and 3π . Other analyses?
- Iron out differences via combined effort for RMCL WG's 'best estimate' for a_{μ} ? Feasible or misleading?
- Role of data to better constrain light-by-light?
- \rightarrow Need to discuss:
 - how to achieve required improvements;
 - scope for 'inclusive' measurement (at least for higher-multiplicity final states);
 - contributions within RMCL WG?