Complete one loop corrections to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$ in PHOKHARA generator

Michal Gunia

Working Group ‘Radio Monte CarLow',Frascati

15 April 2012

Collaboration

F. Campanario, (KIT, Karlsruhe)
H. Czyz, (Silesia U.)
J. Gluza, (Silesia U.)
M. Gunia, (Silesia U.)
T. Riemann, (DESY, Zeuthen)
G. Rodrigo, (U. de Valencia)
V. Yundin, (U. of Copenhagen)

Table of contents

(1) Introduction
(2) Corrections to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$ in PHOKHARA generator
(3) Soft part
(4) Virtual corrections - tests
(5) First results
(6) Conclusions

EPS Conference 2011 - G. Venanzoni

Comparison of results: KLOE10 vs BaBar

BaBar results compared to KLOE10: Fractional difference

Aim of the work

- calculation of the one loop corrections for the process $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$ with PHOKHARA MC generator;
- discussion of the numerical results for energies and with cuts near the real one for KLOE experiment;
- comparison complete calculations with results from previous version of PHOKHARA;
- additional tests of agreement between two independent applications for calculating virtual corrections;

Corrections to $\mathrm{e}^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$ in PHOKHARA generator

- real one photon emission (Born) and two real photon emission (NLO): soft + hard:

- virtual corrections:

What's new in PHOKHARA for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$?

- FSR emission of two hard photon, full amplitude for processes with one ISR photon and one FSR, interferences between all diagrams with emission of two photons;
- full soft part when one photon is soft and one is hard;
- all pentagons, box diagrams with radiation from final state and all interferences between box diagrams and Born;
- full corrections with triangles.

Tests in PHOKHARA for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$

- test for the agreement between trace and helicity method for amplitudes with hard emission of two photons: for 2 FSR photon and 1 FSR and 1 ISR;
- tests for random points from PHOKHARA for soft part for analytical formula and numerical integral;
- tests for soft part for agreement between quad and double precision for analytical formula;
- tests for cut independence between hard and soft part ;
- tests for agreement between two independent subroutines for all virtual corrections;

Soft part

In our frame (incoming particles are in centre of mass frame) it was necessary to calculate soft part independently. Solution is not trivial to present and contains set of dilogarithms.

Solution - example

$$
\begin{align*}
& \operatorname{Int} 1=\int \frac{\left|\overline{k_{1}}\right|^{2} d k_{1} d \varphi d \cos \phi}{\sqrt{\left|\overline{k_{1}}\right|^{2}+\lambda^{2}}} \frac{p_{1} \cdot q_{2}}{\left(k_{1} \cdot p_{1}\right)\left(k_{1} \cdot q_{2}\right)}=\operatorname{const} 1 \int_{\hat{t}_{a}}^{\hat{t_{b}}} d \hat{t}\left[\frac{A_{1}}{\hat{t}-\frac{1}{\hat{t}_{3}}}+\frac{B_{1}}{\hat{t}-\frac{1}{\hat{t}_{4}}}+\frac{C_{1}}{\hat{t}+\hat{t}_{3}}+\frac{D_{1}}{\hat{t}+\hat{t}_{4}}\right] \\
& \cdot \log \left(\frac{\left(\left(E_{q_{2}}-E_{p_{1}}\right)-\sqrt{a}\right)\left(\hat{t}-\frac{1}{\hat{t}_{3}}\right)\left(\hat{t}-\frac{1}{\hat{t}_{4}}\right)}{\left(\left(E_{q_{2}}-E_{p_{1}}\right)+\sqrt{a}\right)\left(\hat{t}+\hat{t}_{3}\right)\left(\hat{t}+\hat{t}_{4}\right)}\right)= \tag{2}\\
& \text { const } 1 *\left\{A _ { 1 } * \left[\log (- \text { const } 2) \log \left(\hat{t}-\frac{1}{\hat{t}_{3}}\right)+\frac{1}{2} \log ^{2}\left(\hat{t}-\frac{1}{\hat{t}_{3}}\right)+\log \left(\frac{1}{\hat{t}_{4}}-\frac{1}{\hat{t}_{3}}\right) \log \left(\hat{t}-\frac{1}{\hat{t}_{3}}\right)-L i_{2}\left(\frac{-\frac{1}{\hat{t}_{3}}+\hat{t}}{\frac{1}{\hat{t}_{4}}-\frac{1}{t_{3}}}\right)\right.\right. \tag{3}\\
& \left.-\left(\log \left(-\hat{t}_{3}-\frac{1}{\hat{t}_{3}}\right) \log \left(\hat{t}-\frac{1}{\hat{t}_{3}}\right)-L i_{2}\left(\frac{-\frac{1}{\hat{t}_{3}}+\hat{t}}{-\hat{t}_{3}-\frac{1}{\hat{t}_{3}}}\right)\right)-\left(\log \left(-\hat{t}_{4}-\frac{1}{\hat{t}_{3}}\right) \log \left(\hat{t}-\frac{1}{\hat{t}_{3}}\right)-L i_{2}\left(\frac{-\frac{1}{t_{3}}+\hat{t}}{-\hat{t}_{4}-\frac{1}{t_{3}}}\right)\right)\right] \tag{4}\\
& +B_{1}\left[\log (-\operatorname{const} 2) \log \left(\hat{t}-\frac{1}{\hat{t}_{4}}\right)+\log \left(-\frac{1}{\hat{t}_{3}}+\frac{1}{\hat{t}_{4}}\right) \log \left(-\frac{1}{\hat{t}_{4}}+\hat{t}\right)-L i_{2}\left(-\frac{-\frac{1}{\hat{t}_{4}}+\hat{t}}{-\frac{1}{t_{3}}+\frac{1}{\hat{t}_{4}}}\right)\right. \tag{5}\\
& +\frac{1}{2} \log ^{2}\left(\hat{t}-\frac{1}{\hat{t}_{4}}\right)-\left(\left.\log \left(\hat{t}-\frac{1}{\hat{t}_{4}}\right) \log \left(\hat{t}+\hat{t}_{3}\right)\right|_{t_{a}} ^{\hat{t}_{b}}-\left(\log \left(-t_{3}-\frac{1}{\hat{t}_{4}}\right) \log \left(\hat{t}+\hat{t}_{3}\right)\right.\right. \\
& \left.\left.\left.\left.-L i_{2}\left(-\frac{\hat{t}+\hat{t}_{3}}{-t_{3}-\frac{1}{t_{4}}}\right)\right)\right)-\left(\log \left(-\hat{t}_{4}-\frac{1}{\hat{t}_{4}}\right) \log \left(-\frac{1}{\hat{t}_{4}}+\hat{t}\right)-L i_{2}\left(\frac{-\frac{1}{\hat{t}_{4}}+\hat{t}}{-\hat{t}_{4}-\frac{1}{t_{4}}}\right)\right)\right]+C_{1}[\ldots]+D_{1}[\ldots]\right\}_{t_{a}}^{\hat{t}_{b}} \tag{6}
\end{align*}
$$

Tests

Cut independence

"KLOE cuts" :

- outcoming tracks between 50 and 130 degree;
- missing photon angle $<15 \mathrm{deg}$ ($>165 \mathrm{deg}$)
- $80<m$ trk $<115 \mathrm{MeV}$
- minimal photon energy/missing energy 0.01 d 0 GeV

Result:
$\omega=10^{-4}, \sigma_{1}=5.187(2) \mathrm{nb}$
$\omega=10^{-5}, \sigma_{2}=5.186(2) \mathrm{nb}$
$\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}=0,0002(7)$

Tests

Next slides: Two plots presenting relative difference for random point from PHOKHARA between analytical and numerical expressions $\left(\frac{f_{\text {analyt }}-f_{\text {num }}}{f_{\text {analyt }}}\right)$ for soft formula as a function of ratio $\frac{\lambda}{\Delta}$.
Third plot shows histogram for relative difference between quad and double precision for analytical soft formula $\left(\left(\frac{f_{\text {quad }}-f_{\text {dble }}}{f_{\text {quad }}}\right)\right)$. X (i-index) - axis shows intervals of errors (in logarithm).

number of events
Quad vs. double precision: $\sqrt{s}=1.02 \mathrm{GeV}$

Virtual corrections

Two independent versions of subroutines for pentagons and box diagrams were used for tests and preliminary calculations:

- quad precision version (F. Campanario, G. Rodrigo);
- double precision version (V. Yundin, T. Riemann);

Two independent versions of subroutines for triangle diagrams were checked:

- extended version of PHOKHARA subroutine for triangle diagrams (double precision);
- double precision version (V. Yundin);

They were compared in points obtained from MC PHOKHARA generator.

Tests

Next slides:
Plots for the pentagons and box diagrams shows histogram for relative difference between two different subroutines $\left(\left(\frac{f_{\text {Campanario }}-f_{\text {Yundin }}}{f f_{\text {Campanario }}}\right)\right)$. Plot for triangles shows histogram for relative difference between two different subroutines $\left(\left(\frac{f_{\text {PHOKHARA }}-f_{\text {Yundin }}}{f_{\text {PHOKHARA }}}\right)\right)$.
X (i-index) - axis shows intervals of errors (in logarithm).
number of events
PENTAGONS: $\sqrt{s}=1.02 G e V$

number of events
BOX: $\sqrt{s}=1.02 G e V$

number of events
BOX ISR: $\sqrt{s}=1.02 G e V$

number of events
BOX FSR: $\sqrt{s}=1.02 \mathrm{GeV}$

number of events
TRIANGLE: $\sqrt{s}=1.02 \mathrm{GeV}$

First results

KLOE cuts		
[nb]	PHOKHARA: $\sigma_{P H}$	PHOKHARA+new corr.: $\sigma_{\text {PHnew }}$
1 photon	2.7233(5)	2.708(1)
2 photon	2.4768(5)	2.479(1)
sum	5.2001(6)	5.187(1)
	difference	0.013(1)
	$\frac{{ }_{\text {PH }}-\sigma_{\text {PHnew }}}{\sigma_{\text {PH }}}$	2.5(3)\%0
$\sqrt{s}=1.02 \mathrm{GeV}$ no cuts		
	$\frac{\sigma_{\text {PH }}-\sigma_{\text {PH }}}{\sigma_{\text {PH }}}$	4.6(9)\%0

$$
\sqrt{s}=1.02 G e V-\text { KLOE CUTS }
$$

Conclusions

- additional corrections inside PHOKHARA MC generator seems to change result at the level of few $\%$;
- better precision is required for physical results;
- further simulations in progress;
- as far all tests look right;
- plans: new public version of generator: PHOKHARA8 (soon).

