Impact of the "untagged" invariant on the single-tag $e^{+} e^{-} \rightarrow e^{+} e^{-} \mathcal{P}$ cross-section (arXiv:1202.1171 + ...)

Sergiy IVASHYN ${ }^{1}$
Henryk CZYŻ²

1 Akhiezer Institute for Theoretical Physics
NSC "KIPT", Kharkiv, Ukraine
2 Chełkowski Institute of Physics
University of Silesia, Katowice, Poland
April 17, 2012

Structure of this talk

(9) A few words about "single-tag" experiments
(2) Is it in fact the $F\left(Q^{2}, 0\right)$ that is measured?
(3) Can one measure $F\left(Q^{2}, q^{2}\right)$?
(1) A few words about "single-tag" experiments

(2) Is it in fact the $F\left(Q^{2}, 0\right)$ that is measured?

(3) Can one measure $F\left(Q^{2}, q^{2}\right)$?

Single-tag $e^{+} e^{-} \rightarrow e^{+} e^{-} \mathcal{P}$

The first invariant, $Q^{2}=-t$, is associated with the detected lepton

Single-tag $e^{+} e^{-} \rightarrow e^{+} e^{-} \mathcal{P}$

The second invariant, q^{2}, is associated with the missing lepton and can be constrained by the event selection

The BaBar's π^{0} case

FIG. 23 (color online). The $\gamma \gamma^{*} \rightarrow \pi^{0}$ transition form factor multiplied by Q^{2}. The dashed line indicates the asymptotic limit for the form factor. The solid and dotted lines show the predictions for the form factor [8] for the CZ [26] and asymptotic (ASY) [27] models for the pion distribution amplitude, respectively. The shaded band represents the prediction for the BMS [281 pion DA model.

(1) A few words about "single-tag" experiments

(2) Is it in fact the $F\left(Q^{2}, 0\right)$ that is measured?
(3) Can one measure $F\left(Q^{2}, q^{2}\right)$?

Discussion within Vector meson dominance

Peter Lichard

PHYSICAL REVIEW D 83, 037503 (2011)

Is it in fact $F\left(Q^{2}, 0\right)$ that is measured?

FIG. 3. Dependence of $Q_{1}^{2} F\left(Q_{1}^{2}, Q_{2}^{2}\right)$ on Q_{1}^{2} for four fixed values of Q_{2}^{2} calculated in the full version of our model. The CELLO [10], CLEO [9], and BABAR [1] data are also shown.

Discussion within Light-cone sum rules

 and A. V. Pimikov ${ }^{2,3,}$

Is it in fact $F\left(Q^{2}, 0\right)$ that is measured?

Figure 2: (color online). Theoretical predictions for the scaled $\gamma^{*} \gamma \pi^{0}$ transition form factor in comparison with data taken from various experiments, as indicated, using the theoretical framework described in the text. The upper (green) strip shows the results obtained in [5] using the method described in the text. The lower (blue) strip represents the influence of the small virtuality of the quasi-real photon induced by the untagged electron.

The form factor and the cross section

$$
\begin{gathered}
d \sigma_{\text {avg }}\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}\right)=\frac{1}{4} \frac{1}{2 s} d{L i p s_{3}} \sum|\mathcal{M}|^{2} \\
\mathcal{M}=-\frac{4 i \alpha^{2}}{f_{\pi}} F\left(t_{1}, t_{2}\right) \epsilon_{\mu \nu \alpha \beta} \frac{1}{t_{1} t_{2}}\left(q_{1}-p_{1}\right)^{\alpha}\left(q_{2}-p_{2}\right)^{\beta} \\
\\
\times\left(\bar{v}\left(p_{1}\right) \gamma^{\mu} v\left(q_{1}\right)\right)\left(\bar{u}\left(q_{2}\right) \gamma^{\nu} u\left(p_{2}\right)\right)
\end{gathered}
$$

- The factor $1 / t_{2}$ strongly suppresses the impact of the t_{2}-dependence of $F\left(t_{1}, t_{2}\right)$ on the cross section

Measured quantity

$d \sigma_{\text {avg }}$ integrated within (quite complicated) cuts

The BaBar's comment on the uncertainty

$$
\begin{equation*}
F^{2}\left(Q^{2}\right)=\frac{\left(d \sigma / d Q^{2}\right)_{\mathrm{data}}}{\left(d \sigma / d Q^{2}\right)_{\mathrm{MC}}} F_{\mathrm{MC}}^{2} \tag{8}
\end{equation*}
$$

The calculated cross section $\left(d \sigma / d Q^{2}\right)_{\mathrm{MC}}$ has a modeldependent uncertainty due to the unknown dependence on the momentum transfer to the untagged electron. We use a q_{2}^{2}-independent form factor, which corresponds to the QCD-inspired model $F\left(q_{1}^{2}, q_{2}^{2}\right) \propto 1 /\left(q_{1}^{2}+q_{2}^{2}\right) \approx 1 / q_{1}^{2}$ [23]. Using the vector dominance model with the form factor $F\left(q_{2}^{2}\right) \propto 1 /\left(1-q_{2}^{2} / m_{\rho}^{2}\right)$, where m_{ρ} is ρ meson mass, leads to a decrease of the cross section by 3.5%. This difference is considered to be an estimate of model uncertainty due to the unknown q_{2}^{2} dependence. However, it should be noted that this estimate depends strongly on the limit on q_{2}^{2}. The value of 3.5% is obtained with $\left|q_{2}^{2}\right|<$ $0.18 \mathrm{GeV}^{2}$. For a less stringent q_{2}^{2} constraint, for example $\left|q_{2}^{2}\right|<0.6 \mathrm{GeV}^{2}$, the difference between the calculated cross sections reaches 7.5%.
\Rightarrow Yes, it is indeed the $F\left(Q^{2}, 0\right)$
\checkmark The related uncertainty was estimated

\Rightarrow Thus, the fuss about nothing?

- We performed a simulation of model-dependent and q^{2}-dependent effects in the cross section (for details see arXiv:1202.1171)

EKHARA 2.1

H. Czyż, S. Ivashyn, Comp.Phys.Comm., 182, 1338 (2011)
$e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}$
$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta$
$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta^{\prime}$
154. "realistic" form factors
H. Czyż, S. Ivashyn,
A. Korchin, O. Shekhovtsova arXiv:1202.1171, to appear in Phys.Rev.D

The relative difference of the cross sections

$(d \sigma[$ full $]-d \sigma[$ approx $]) / d \sigma[$ full $]$

- d $\sigma\left[\right.$ approx]: $F\left(Q^{2}, q^{2}\right) \approx F\left(Q^{2}, 0\right)$
- $d \sigma[f u l l]$ accounts for full $F\left(Q^{2}, q^{2}\right)$

The relative difference of the cross sections

$\left(d \sigma[f u l]-d_{\sigma}[\right.$ approx $\left.]\right) / d \sigma[$ full $]$

(1) $\left|q_{2}^{2}\right|<0.18 \mathrm{GeV}^{2}$

Cuts :
(2) $\left|\cos \theta_{e \mathcal{P}}^{*}\right|>0.99$ and $\left|q_{2}^{2}\right|<0.6 \mathrm{GeV}^{2}$
(3) $\left|q_{2}^{2}\right|<0.38 \mathrm{GeV}^{2}$

$\frac{d \sigma}{d Q^{2}}:$ full, approximate and data

Cuts:

Our remarks (summary)

- The impact of the approximation $F\left(Q^{2}, q^{2}\right) \approx F\left(Q^{2}, 0\right)$ on the cross section was estimated and accounted for by BaBar
- our simulation of π^{0} cross section leads to a similar estimate of uncertainty
- The statistical error at BaBar was bigger than the above uncertainty

The issue of $F\left(Q^{2}, q^{2}\right) \approx F\left(Q^{2}, 0\right)$ is not a reason for the data/theory discrepancy

(1) A few words about "single-tag" experiments

(2) Is it in fact the $F\left(Q^{2}, 0\right)$ that is measured?

(3) Can one measure $F\left(Q^{2}, q^{2}\right)$?

Single-tag $e^{+} e^{-} \rightarrow e^{+} e^{-} \mathcal{P}$

The second invariant, q^{2}, is associated with the missing lepton and can be constrained by the event selection

Single-tag $e^{+} e^{-} \rightarrow e^{+} e^{-} \mathcal{P}$

Let's vary the q^{2} cut \Rightarrow a couple of bins in q^{2}

Single-tag $e^{+} e^{-} \rightarrow e^{+} e^{-} \mathcal{P}$

Let's vary the q^{2} cut \Rightarrow a couple of bins in q^{2}

- How many events one could expect?
- $d \sigma$ drops down rapidly with both Q^{2} and q^{2}
- Q^{2} is "scanned" by the detected lepton
- the bulk of the events are in the first bins
- \Rightarrow gives the Q^{2} range
- q^{2} is cut by the the event selection ("missing lepton angle, etc.") BaBar: $\left|q^{2}\right|<0.18 \mathrm{GeV}^{2} \quad$ BES-III: ${ }^{1}\left|q^{2}\right|<0.07 \mathrm{GeV}^{2}$
- let's have a couple of bins in q^{2} around this cut
\Rightarrow "split" the existing cut
\Rightarrow "expand" the existing cut

BaBar energy. Integrated cross section

$$
\begin{aligned}
& 4.0 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<4.5 \mathrm{GeV}^{2} \\
& 4.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<5.0 \mathrm{GeV}^{2}
\end{aligned}
$$

EKHARA simulation ($\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$) at sqrt(s) $=10.60 \mathrm{GeV}$

"split"

$$
\begin{aligned}
& 4.0 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<4.5 \mathrm{GeV}^{2} \\
& 4.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<5.0 \mathrm{GeV}^{2}
\end{aligned}
$$

EKHARA simulation ($\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$) at sqrt(s) $=10.60 \mathrm{GeV}$

BaBar energy. Number of events

$$
\begin{aligned}
& 4.0 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<4.5 \mathrm{GeV}^{2} \\
& 4.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<5.0 \mathrm{GeV}^{2}
\end{aligned}
$$

EKHARA simulation ($\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$) at sqrt(s) $=10.60 \mathrm{GeV}$ n

$$
\begin{aligned}
& 4.0 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<4.5 \mathrm{GeV}^{2} \\
& 4.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<5.0 \mathrm{GeV}^{2}
\end{aligned}
$$

"split"

"expand"

BES-III energy. Integrated cross section

$$
\begin{aligned}
& 0.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.7 \mathrm{GeV}^{2} \\
& 0.7 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.9 \mathrm{GeV}^{2}
\end{aligned}
$$

EKHARA simulation ($\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$) at sqrt(s) $=3.77 \mathrm{GeV}$

"split"

$$
\begin{aligned}
& 0.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.7 \mathrm{GeV}^{2} \\
& 0.7 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.9 \mathrm{GeV}^{2}
\end{aligned}
$$

EKHARA simulation $\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}\right)$ at sqrt(s) $=3.77 \mathrm{GeV}$

BES-III energy. Number of events

$$
\begin{aligned}
& 0.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.7 \mathrm{GeV}^{2} \\
& 0.7 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.9 \mathrm{GeV}^{2}
\end{aligned}
$$

EKHARA simulation ($\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$) at sqrt(s) $=3.77 \mathrm{GeV}$

"split"

$$
\begin{aligned}
& 0.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.7 \mathrm{GeV}^{2} \\
& 0.7 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<0.9 \mathrm{GeV}^{2}
\end{aligned}
$$

EKHARA simulation $\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}\right)$ at sqrt(s) $=3.77 \mathrm{GeV}$

Can one measure $F\left(Q^{2}, q^{2}\right)$?

- Our simulation is simplified ...

Can one measure $F\left(Q^{2}, q^{2}\right)$?

- Our simulation is simplified...
- ... but it indicates a reasonable statistics with the already existing integrated luminosity at BaBar and BES-III...

Can one measure $F\left(Q^{2}, q^{2}\right)$?

- Our simulation is simplified...
- ... but it indicates a reasonable statistics with the already existing integrated luminosity at BaBar and BES-III...
- ... for a first couple of bins in Q^{2} and q^{2}

Can one measure $F\left(Q^{2}, q^{2}\right)$?

- Our simulation is simplified ...
- ... but it indicates a reasonable statistics with the already existing integrated luminosity at BaBar and BES-III...
- ... for a first couple of bins in Q^{2} and q^{2}
- But this would already be a great achievement!

We suggest the experimentalists to study how the existing q^{2} cuts could be "split" or "expanded"

Spare slides

The form factor and the cross section

$$
d \sigma_{\text {avg }}\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}\right)=\frac{1}{4} \frac{1}{2 s} d \operatorname{Lips}_{3} \sum|\mathcal{M}|^{2}
$$

$d \mathrm{Lips}_{3}$ is the differential 3-body Lorentz-invariant phase space

$$
\begin{aligned}
\mathcal{M}= & -\frac{4 i \alpha^{2}}{f_{\pi}} F\left(t_{1}, t_{2}\right) \epsilon_{\mu \nu \alpha \beta} \frac{1}{t_{1} t_{2}}\left(q_{1}-p_{1}\right)^{\alpha}\left(q_{2}-p_{2}\right)^{\beta} \\
& \times\left(\bar{v}\left(p_{1}\right) \gamma^{\mu} v\left(q_{1}\right)\right)\left(\bar{u}\left(q_{2}\right) \gamma^{\nu} u\left(p_{2}\right)\right)
\end{aligned}
$$

- Experimental cuts on the the missing lepton are based on the assumption of 3-body final state in the signal process (please correct me, if I am wrong)
- A part of the radiative corrections - hard photon emission \Rightarrow 4-body final state

- How much does this radiative corrections "shift" the Q^{2}, q^{2} and other distributions?

At present time we are working on the implementation of the radiative corrections in EKHARA

