Impact of the "untagged" invariant on the single-tag $e^+e^- \rightarrow e^+e^-\mathcal{P}$ cross-section (arXiv:1202.1171 + ...)

Sergiy IVASHYN¹

Henryk CZYŻ²

 Akhiezer Institute for Theoretical Physics NSC "KIPT", Kharkiv, Ukraine
 Chełkowski Institute of Physics University of Silesia, Katowice, Poland

April 17, 2012

IVASHYN and CZYŻ (17 IV 2012)

the "untagged" invariant

Structure of this talk

A few words about "single-tag" experiments

2 Is it in fact the $F(Q^2, 0)$ that is measured?

3 Can one measure $F(Q^2, q^2)$?

2 Is it in fact the $F(Q^2, 0)$ that is measured?

3) Can one measure $F(Q^2, q^2)$?

The first invariant, $Q^2 = -t$, is associated with the detected lepton

The second invariant, q^2 , is associated with the missing lepton and can be constrained by the event selection

The BaBar's π^0 case

FIG. 23 (color online). The $\gamma\gamma^* \rightarrow \pi^0$ transition form factor multiplied by Q^2 . The dashed line indicates the asymptotic limit for the form factor. The solid and dotted lines show the predictions for the form factor [8] for the CZ [26] and asymptotic (ASY) [27] models for the pion distribution amplitude, respectively. The shaded band represents the prediction for the BMS [28] pion DA model.

✓ Data/theory discrepancy

2 Is it in fact the $F(Q^2, 0)$ that is measured?

Can one measure $F(Q^2, q^2)$?

Discussion within Vector meson dominance

Is it in fact $F(Q^2, 0)$ that is measured?

FIG. 3. Dependence of $Q_1^2 F(Q_1^2, Q_2^2)$ on Q_1^2 for four fixed values of Q_2^2 calculated in the full version of our model. The CELLO [10], CLEO [9], and *BABAR* [1] data are also shown.

Discussion within Light-cone sum rules

N. G. Stefanis,¹, A. P. Bakulev,², S. V. Mikhailov,², and A. V. Pimikov^{2,3,}

Figure 2: (color online). Theoretical predictions for the scaled $\gamma^* \gamma \pi^0$ transition form factor in comparison with data taken from various experiments, as indicated, using the theoretical framework described in the text. The upper (green) strip shows the results obtained in 5 using the method described in the text. The lower (blue) strip represents the influence of the small virtuality of the quasi-real photon induced by the untagged electron.

The form factor and the cross section

$$d \,\, \sigma_{avg}(e^+e^- o e^+e^-\pi^0) \,\,\, = \,\,\, rac{1}{4} rac{1}{2s} d \,\, {\it Lips}_3 \,\, \sum |{\cal M}|^2$$

$$\mathcal{M} = -\frac{4 i \alpha^2}{f_{\pi}} F(t_1, t_2) \epsilon_{\mu\nu\alpha\beta} \frac{1}{t_1 t_2} (q_1 - p_1)^{\alpha} (q_2 - p_2)^{\beta} \\ \times (\bar{v}(p_1) \gamma^{\mu} v(q_1)) (\bar{u}(q_2) \gamma^{\nu} u(p_2))$$

• The factor $1/t_2$ strongly suppresses the impact of the t_2 -dependence of $F(t_1, t_2)$ on the cross section

Measured quantity

d $\sigma_{\rm avg}$ integrated within (quite complicated) cuts

The BaBar's comment on the uncertainty

B. AUBERT et al.

PHYSICAL REVIEW D 80, 052002 (2009)

$$F^{2}(Q^{2}) = \frac{(d\sigma/dQ^{2})_{\text{data}}}{(d\sigma/dQ^{2})_{\text{MC}}} F^{2}_{\text{MC}}.$$
 (8)

The calculated cross section $(d\sigma/dQ^2)_{\rm MC}$ has a modeldependent uncertainty due to the unknown dependence on the momentum transfer to the untagged electron. We use a q_2^2 -independent form factor, which corresponds to the QCD-inspired model $F(q_1^2, q_2^2) \propto 1/(q_1^2 + q_2^2) \approx 1/q_1^2$ [23]. Using the vector dominance model with the form factor $F(q_2^2) \propto 1/(1-q_2^2/m_{\mu}^2)$, where m_{ρ} is ρ meson mass, leads to a decrease of the cross section by 3.5%. This difference is considered to be an estimate of model uncertainty due to the unknown q_2^2 dependence. However, it should be noted that this estimate depends strongly on the limit on q_2^2 . The value of 3.5% is obtained with $|q_2^2| < 0.18$ GeV². For a less stringent q_2^2 constraint, for example $|q_2^2| < 0.6$ GeV², the difference between the calculated cross sections reaches 7.5%.

- \Rightarrow Yes, it *is indeed* the $F(Q^2, 0)$
- ✓ The related uncertainty was estimated
- \Rightarrow Thus, the fuss about nothing?

 We performed a simulation of model-dependent and q²-dependent effects in the cross section

(for details see arXiv:1202.1171)

EKHARA 2.1

H. Czyż, S. Ivashyn, Comp.Phys.Comm., 182, 1338 (2011)

$$e^+e^-
ightarrow e^+e^- \pi^0$$

 $e^+e^-
ightarrow e^+e^- \eta$
 $e^+e^-
ightarrow e^+e^- \eta'$

"realistic" form factors

H. Czyż, S. Ivashyn,A. Korchin, O. Shekhovtsova arXiv:1202.1171, to appear in Phys.Rev.D

http://prac.us.edu.pl/%7Eekhara

The relative difference of the cross sections

- $d\sigma[approx]$: $F(Q^2, q^2) \approx F(Q^2, 0)$
- $d\sigma[full]$ accounts for full $F(Q^2, q^2)$

The relative difference of the cross sections

$$(3) |q_2^2| < 0.38 \text{ GeV}^2$$

$\frac{d\sigma}{dQ^2}$: full, approximate and data

Cuts:

$|q_2^2| < 0.18 \text{ GeV}^2$

Our remarks (summary)

- The impact of the approximation $F(Q^2, q^2) \approx F(Q^2, 0)$ on the cross section was estimated and accounted for by BaBar
- our simulation of π^0 cross section leads to a similar estimate of uncertainty

[for details see arXiv:1202.1171]

• The statistical error at BaBar was bigger than the above uncertainty

The issue of $F(Q^2, q^2) \approx F(Q^2, 0)$ is **not a reason** for the data/theory discrepancy

Is it in fact the F(Q², 0) that is measured?

3 Can one measure $F(Q^2, q^2)$?

The second invariant, q^2 , is associated with the missing lepton and can be constrained by the event selection

Let's vary the q^2 cut \Rightarrow a couple of bins in q^2

Let's vary the q^2 cut \Rightarrow a couple of bins in q^2

• How many events one could expect?

- $d\sigma$ drops down rapidly with both Q^2 and q^2
- Q^2 is "scanned" by the detected lepton
 - the bulk of the events are in the first bins
 - \Rightarrow gives the Q^2 range
- q² is cut by the the event selection ("missing lepton angle, etc.") BaBar: |q²| < 0.18 GeV² BES-III: ¹ |q²| < 0.07 GeV²
 - let's have a couple of bins in q^2 around this cut
 - \Rightarrow "split" the existing cut
 - \Rightarrow "expand" the existing cut

¹Our guesstimate

BaBar energy. Integrated cross section

IVASHYN and CZYŻ (17 IV 2012)

the "untagged" invariant

BaBar energy. Number of events

BES-III energy. Integrated cross section

IVASHYN and CZYŻ (17 IV 2012)

E.

 $0.5 \,\text{GeV}^2 < \Omega^2 < 0.7 \,\text{GeV}^2$

 $0.7 \text{ GeV}^2 < Q^2 < 0.9 \text{ GeV}^2$

BES-III energy. Number of events

• Our simulation is simplified ...

- Our simulation is simplified
- ... but it indicates a reasonable statistics with the already existing integrated luminosity at BaBar and BES-III...

- Our simulation is simplified
- ... but it indicates a reasonable statistics with the already existing integrated luminosity at BaBar and BES-III...
- ... for a first couple of bins in Q^2 and q^2

- Our simulation is simplified
- ... but it indicates a reasonable statistics with the already existing integrated luminosity at BaBar and BES-III...
- ... for a first couple of bins in Q^2 and q^2
- But this would already be a great achievement!

We suggest the experimentalists to study how the existing q^2 cuts could be "split" or "expanded"

Spare slides

IVASHYN and CZYŻ (17 IV 2012)

the "untagged" invariant

Radio MonteCarLow 25 / 27

The form factor and the cross section

$$d \ \sigma_{avg}(e^+e^-
ightarrow e^+e^-\pi^0) \ = \ rac{1}{4}rac{1}{2s} d \ {\it Lips}_3 \ \sum |{\cal M}|^2$$

d Lips₃ is the differential 3-body Lorentz-invariant phase space

$$\mathcal{M} = -\frac{4 i \alpha^2}{f_{\pi}} F(t_1, t_2) \epsilon_{\mu\nu\alpha\beta} \frac{1}{t_1 t_2} (q_1 - p_1)^{\alpha} (q_2 - p_2)^{\beta} \\ \times (\bar{\nu}(p_1) \gamma^{\mu} \nu(q_1)) (\bar{\nu}(q_2) \gamma^{\nu} \nu(p_2))$$

The normalization is F(0, 0) = 1

 q_2

 p_2

the "untagged" invariant

- Experimental cuts on the the missing lepton are based on the assumption of 3-body final state in the signal process (please correct me, if I am wrong)
- A part of the radiative corrections hard photon emission ⇒ 4-body final state

• How much does this radiative corrections "shift" the *Q*², *q*² and other distributions?

At present time we are working on the implementation of the radiative corrections in EKHARA