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SRF  Conceived for CW Operation
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Argonne National Labs 

ATLAS: Heavy-ion Linac

• Originated at Caltech for  ~ 0.1 

Stanford University

HEPL: Electron Linac for FEL

• First multicell electron cavity:  = 1 
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Before TESLA all Project asked for CW
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“Livingston Plot” by Hasan Padamsee
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Superconducting RF vs NC-RF
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Power dissipated on the cavity walls to sustain the field is:
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Good, but the gain of up  to 6 

order of magnitudes is not

guaranted and it’s not for free:

▪ Cryogenics

▪ Material & Surface Science

▪ Clean Technology

▪ ……
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First Industrial Production in Japan (1988 – 1995)

Carlo Pagani 7

The first mass-production of SRF 
Cavities in the world

SRF Cavity for TRISTAN at KEK

Bulk-Nb - 508MHz - 5-Cell Cavity 

32 SRF cavities were fabricated by 
Mitsubishi and operated in TRISTAN 
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LEP-2 Cavities for CERN in Industry
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Installed Cryomodules at TESLA time
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TRISTAN - 1986

CEBAF- 1995

LEP-II - 1998
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First Pulsing in 1983 by Campisi & Farcas
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In spite of technology ILC Linacs are pulsed
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30 GHz-Warm
11.4 GHz - Warm

1.3 GHz - Cold

ILC Competing Technologies in the nineties

 mode

NC Traveling wave
SC Standing wave
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Luminosity is Proportional to Beam Power
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Parameters to play with

Reduce beam emittance (εx
.εy ) for smaller beam size (σx

.σy ) 

Increase bunch population (Ne )

Increase beam power

Increase beam to-plug power efficiency for cost

nb = # of bunches per pulse

frep   =   pulse repetition rate

Pb = beam power

Ec.m.=   center of mass energy

L    =   Luminosity

Ne = # of electron per bunch

σx,y. =  beam sizes at IP

IP   =  interaction point
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C. Pagani - ISLC08 - Lecture 1
Oak Brook, October 20, 2008
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Pulsed Operation for Conversion Efficiency
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All the LCs must be pulsed machines to improve Plug Power to Beam 

Power conversion efficiency. As a result: 
• duty factors are small 

• pulse peak powers can be very large

RF Pulses

Bunch Train

Beam Loading

<10-200 ms

<1 µs-1ms

1-300 nsec

100 m - 300 km

…………………....……

gradient

with further input

without input

filling loading

accelerating field pulse:

C. Pagani - ISLC08 - Lecture 1
Oak Brook, October 20, 2008
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TESLA Collaboration: Origin and Mission
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Develop SRF for a TeV Linear Collider

• Increase gradient by a factor of 5 

• Reduce cost per MV by a factor 20 (New cryomodule 

concept and Industrialization)

• Make possible pulsed operation 

Major advantages vs NC Technology

• Higher conversion efficiency: more beam power for 

less plug power consumption

• Lower RF frequency: relaxed tolerances and smaller 

emittance dilution
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TESLA Technical Design Report: March 2001
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Figure 3.  Main LINAC, Damping Ring &  Klystron Station

As in the TDR

Updated tunnel cross section
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Industrial Studies for TESLA TDR & E-XFEL
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TESLA/XFEL Accelerator Components
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HOMs

coupler

RFLLRF

cavities

TESLA 
Technology

Tuners

Cryomodule
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The TESLA SRF Cavity, 1.3 GHz, 9-cell

Large number of cells with minimum reasonable bore radius for FF and  tuning 

Odd number of cells with sligthly different end groups for trap modes

Large wall angle and round equator for surface treatments and multipatoring

2 HOM coupler to extract dangerous modes excited by the beam (1% DF)

Stiffening rings for Lorentz Forces, mechanical rigidity and eigen modes

New fabrication strategy required

Carlo Pagani 19
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From Pulsed EuXFEL back to CW

Duty Factor, DF is goin from 1% to 100%

Dynamic Cryo-losses follow DF if cavity parameters stay unchanged

But dynamic cryo-losses are also: 

▪ proportional to Eacc
2

▪ inversely proportional to Q0

The reducttion of peak current and bunch charge require different RF sources but they are not

affecting the cryo-power 

▪ Beam current: from several mA peak to < 0.2 mA

▪ Buch charge, Ne : from several nC to < 0.2 nC

A new set of working parameters is needed for CW, but utilising as much as

possible all the technology already developped and qualified in the 

framework of the TESLA Collaboration.

Carlo Pagani 21
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Operating EuXFEL in CW

Just changing the pulsed Klystrons with CW RF Sources and adapting

coupling and control electronics, the existing EuXFEL design, based on the 

TESLA pulsed machine, would be modest because of a few bottle neck:
Limited installed cryo-power

Cryo-strings of 12 cryomodules served by a JT valve (240 W limit)

Insufficient HOM cooling

Eacc < 7 MV/m    < 6 GeV with ca. 100 Cryomodules

Building a new machine with a larger cryo-plant, the TESLA design can 

perform much better thank to a few simple adjustment addressed to overcome

the major bottle neck while mantaining all the key technologies.

Eacc > 16 MV/m    > 8 GeV with ca. 70 Cryomodules

Carlo Pagani 22
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Limitations of the actual XFEL Module - 1
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The XFEL main linac consists out of 7 cryo strings,

 every string includes 12 cryo modules,

  every cryo module contains 8 cavities.

2.2 K forward

5 K forward

40 K forward

2-phase tube: 

240 W (20 W/cryomodule) is the 

estimated limit for one cryo string. 

2 K, Gas Return Tube

80 K, Return

8 K, Return

Heat load at 2K for each cryomodule must not exceed 20 W.  W.- D. Möller, J. Sekutowicz|



Limitations of the actual XFEL Module - 2
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Each cryomodule houses 8 cavities

Cavity was designed for ca. 1% DF.

End groups  (FPC and HOM couplers) are cooled by means of heat conduction.

HOM coupler
HOM coupler

FPC

Dissipation on the HOM coupler antennas is the main sources 

of the heat for the end groups. W.- D. Möller, J. Sekutowicz|



Limitations of the actual XFEL Module - 3
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Heating of the HOM couplers must not lead to quenching of the end-cells. 

Experience with vertical tests (cavities immersed in the superfluid bath):

Without HOM antennae: 

Eacc up to 45 MV/m in the CW mode

With HOM antennae: 

Eacc up to 13 MV/m in the CW mode

W.- D. Möller, J. Sekutowicz|



A few guidelines for TESLA based CW XFELs

▪ Don’t tuch the cavity design and fabrication metodology

▪ Improve surface treatment for higher Q0 (lower surface resisstance, Rs) 

▪ Mantain the ancillaries (power couipler, tuner, etc) whenever possiblle

▪ Re-design cryogenic distribution to allow higher heat load at 2 K.

▪ 1 JT valve per module, i.e. up to > 20 W/cavity

▪ Slightly increase the size of the 2 phase pipes accordingly

▪ Implement touls needed for high Q0:

▪ Implement magnetic hygiene around the cavities

▪ Improuve 2 K distribution for fast cool-down

▪ Suppress the lower part of the 5 K schield not needed for CW operation

▪ Remember that a 50% marging is normally added in all cryogenic plants

Carlo Pagani 26
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TESLA / E-XFEL 1.3 GHz cavity
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• Pulsed RF up to 10 Hz 
repetition rate.
• 1.4 ms RF pulse length

• Longitudinal stiffness at 
about 3 kN/mm

• Required coarse tuner 
sensitivity at 1 Hz/step 
level

• Long piezo stacks 
required to provide LFD 
compensation.
• 500-600 Hz detuning expected

• About 2 m stroke at the cavity

IASF - CP Seminar #8
Shenzhen, 10 March 2023



Dumb-bells & Stiffening Rings
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Cavity Fabrication Steps
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Half cells are 

shaped by deep 

drawing.

Dumb bells are 

assemled by EB 

welding.

After proper cleaning 

eight dumb bells and two 

end group sections 

welded by EBW together



Different EBW Strategies 
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E-beam

EBW: butt joint (e.g. 

JLab, PAVAC) 

E-beam

E-beam

Vert. Pos. EBW: lap joint  (recess) 

e.g. RI, CERCA, Sciaky

Horiz. Pos.  EBW: lap joint  

(recess) DESY, AES, E.Zanon



Test Pieces for PAD Qualification
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Test piece (TP) is composed by 2 cell with helium vessel, representing all pressure bearing parts and 

welding seams. It is built using the same welding parameters that will be used in the series 

production. Two EBW machines/company. Consequently, two test pieces had been built per company.



Intermediate Steps for Frequency and Length
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EDMS for Storing Data and Communication
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EDMS
Cavity-DB

Inspection sheets for 

quality management

Fabrication structure. 

Subassembly parts related. 

Procedure related

Statistical analysis

Phys. Part

Files

All XFEL SC cavity documents (specifications, protocols, PED data etc.) recorded in EDMS. RI and E. Zanon have 
an access (to relevant data only)

Fabrication



Sources of dynamic detuning, Pulsed & CW
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The Lorentz force detuning, LFD
Lorentz force on shielding currents on cavity 
walls induced by electromagnetic fields, 
equivalent to EM radiation pressure. 

m level complex deformation of the cavity shape

Detuning amplitude scales as Eacc
2, forward 

power instead as Eacc
4!

Depends on both cavity stiffness and on external 
stiffness

Time-varying for pulsed operations

Repetitive, synchronous to RF pulses

Microphonics, MP – Crucial for CW
Stochastic, strongly correlated to He bath 
pressure fluctuations 

Low amplitude, about 30 Hz rms

Main harmonics coming from the cryomodule 
environment are contributing:, typically pumps 
and any other vibrating element



E-XFEL Piezo assisted Tuner, OK for CW
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• Double asymmetric leverage
• lateral on the tank, on pick-up side
• Modified at DESY from the original CEA Saclay design
• Modified after TTF at DESY, now cavity is stretched by the tuner: 

cavity spring force is added to piezo preload

• Cold stepper motor drive unit
• Harmonic Drive reduction gear
• Screw-nut coupling to generate the linear motion

• Cold piezo actuators 
• Two stacks in a single preloading frame, to gain redundancy and 

also to profit of the spare one as a mechanical sensor

IASF - CP Seminar #8
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LLRF Based on Vector-sum not for CW
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FPGA
TCA 

system

A single RF sorce feeding

multiple cavities is possible

also for CW, but because of 

the moderate power of few

kW required for each cavity, 

independent SSA sources 

are usually preferred

Conversely

The possible E-XFEL 

upgrade to CW would use 

the vector-sum scheme

with one IOT per module



Power Coupler is OK but can be simplified
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• TTF III Coupler has a robust and reliable design 

• Succesfully installed in the European XFEL

Pending problems

• Long processing time: ~ 100 h

• Excessive flexibility and High cost 

• Critical assembly procedure



Very Robust Cryomodule Design
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TESLA →XFEL→ILC module design criteria
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High filling factor

maximize real estate gradient/cavity gradient

long cryomodules/cryo-units, short connections

Moderate cost per unit length

simple design, based on reliable technologies

low static heat losses in operation

Effective cold mass alignment strategy

room temperature alignment preserved at cold

Effective/reproducible assembling procedure

clean room assembly just for the cavity string

minimize time consuming operations (cost /reliability)

Module 1 & 2 in TTF I 

Module 1, 2 & 3 in TTF

II

Cry 1

1st Module in TTF I Module 4 & 5 in TTF II

Cry 2 Cry 3



Cryomodule & Assembly as Crucial as Cavity
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Required plug power for static losses < 5 kW / (12 m module)

Reliable Alignment Strategy
Reduced Alignment Tolerances

Sliding Fixtures @ 2 K

“Finger Welded” Shields
Three cryomodule generations to: 
▪ improve simplicity and performances 

▪ ensure precise alignment

▪ minimize the cost

IASF - CP Seminar #8
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The INFN Cryomodule for XFEL & ILC
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TTF Cryomodule Performances
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EuXFEL Cross Section - Pulsed
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Helium tank

Coupler port

Thermal shields

Sliding support

HeGRP & System backbone

Support Post

Two phase line

Pressurized 

He feeding

Shield cooling 

return pipes
WPM

Shield cooling pipes

IASF - CP Seminar #8
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Some of the TESLA/XFEL specific features
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Pulsed operation

High field dominant wrt minimum losses

Lorentz force detuning impact the cavity design

Active fast tuner required for high field 

High peak power coupler for high current

CW operation for XFELs (low average current)

High Q, low losses, dominant wrt maximum field

Microphonics can be crucial

Active fast tuner considered for low current 

High average power coupler for high current 

Other TESLA/ILC dependent features

Very high filling factor : interconnections, tuner, magnets, etc

Very low static losses : long cryo-strings



LCLS-II: TESLA Cryomodule adapted to CW
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J.N. Galayda @ Linac2014
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LCLS-II Cavity in its titanum He Vessel
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Marc Ross @ SRF 2015
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LCLS-II Cryomodule and TESLA/Eu-XFEL

Carlo Pagani 48

T. Peterson et al. @ SRF 2015
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Cavity Beamline String and Supports
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T. Peterson et al. @ SRF 2015
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Cryogenic Circuits in the Cryomodule
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T. Peterson et al. @ SRF 2015
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LCLS-II Cryomodule Flow Scheme
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LCLS-II adapted for Fast Cooldown
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Fast Cool Down Flow: Returns to GHRP

Fast Cool Down Flow: Bottom InletG. Wu et al | SRF 2017
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LCLS-II Sensors on Prototypes
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45-deg tilted fluxgate sensor

Transverse fluxgate sensor 

measuring transverse field

Cernox sensor

Cernox sensorCernox sensor

Cernox sensor

Helium Inlet

Helium Return

Four Cavities Fully 

Instrumented



LCLS-II: Overall Cryomodule Performance
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Dan Gonnella at TTC 2020

Successful demonstration of the first large scale nitrogen doped SRF cavity production by Industry

Demontration of the beneficial effect of fast cooldown for rising Q0 by flux expulsion



Single Thermal Shield for large 2-Phase pipe 
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T. Peterson et al. @ SRF 2015
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Connection Details close to E-XFEL 
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T. Peterson et al. @ SRF 2015
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Power Coupler Design and Integration
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Marc Ross @ SRF 2015
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New Split Quad Conduction Cooled
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Marc Ross @ SRF 2015
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Reviewed Piezo.assisted Tuner
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Marc Ross @ SRF 2015
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The LCLS-II Cryomodule – Tuner Ports
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Marc Ross @ SRF 2015
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Thank you for your attention
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