

深圳综合粒子设施研究院

Institute of Advanced Science Facilities, Shenzhen

Cycle of Seminars by Carlo Pagani Seminar # 8

From the TESLA Pulsed Technology to the new CW FELs

Shenzhen, 10 March 2023 / INFN LASA, 5 February 2025

carlo.pagani@mi.infn.it

IASE - CP Seminar #8

Shenzhen, 10 March 2023

1. SRF Concieved for CW Operation

2. TESLA Technology developped for Pulsing

3. What's needed to go back to CW

4. CW interpretation of the TESLA Technology

1. SRF Concieved for CW Operation

2. TESLA Technology developped for Pulsing

3. What's needed to go back to CW

4. CW interpretation of the TESLA Technology

SRF Conceived for CW Operation

Argonne National Labs ATLAS: Heavy-ion Linac • Originated at Caltech for $\beta \sim 0.1$

Stanford University

HEPL: Electron Linac for FEL

• First multicell electron cavity: $\beta = 1$

Before TESLA all Project asked for CW

Power dissipated on the cavity walls to sustain the field is:

$$P_{diss} = \frac{R_s}{2} \int_{S} H^2 dS$$

Good, but the gain of up to 6 order of magnitudes is not guaranted and it's not for free:

- Cryogenics
- Material & Surface Science
- Clean Technology

.

First Industrial Production in Japan (1988 – 1995)

The **first mass-production** of SRF Cavities in the world

SRF Cavity for TRISTAN at KEK

Bulk-Nb - 508MHz - 5-Cell Cavity

32 SRF cavities were fabricated by Mitsubishi and operated in TRISTAN

LEP-2 Cavities for CERN in Industry

Installed Cryomodules at TESLA time

1. SRF Concieved for CW Operation

2. TESLA Technology developped for Pulsing

3. What's needed to go back to CW

4. CW interpretation of the TESLA Technology

3366

IEEE Transactions on Nuclear Science, Vol. NS-30, No. 4, August 1983

TRANSIENT HIGH-FIELD BEHAVIOR OF NIOBIUM SUPERCONDUCTING CAVITIES*

I. E. CAMPISI, Z. D. FARKAS, H. DERUYTER, AND H. A. HOGG Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Summary

Tests have been performed on the breakdown behavior of a TM₀₁₀ mode, S-band niobium cavity at low temperatures. Unloaded Q's of 9×10^7 at 4.2 K and of 7×10^9 at 1.35 K were measured during several tests performed using pulses long enough for the cavity to reach steady state. The breakdown field at 1.35 K was increased from 15 to 20 MV/m by processing the cavity at room temperature using 1 MW, 2.5 μs pulses. The response of the cavity at 4.2 K to 1 MW, 2.5 μs pulses was also tested in several cool-downs. In these tests the cavity was heavily overcoupled to lower its time constant to a value of 0.80 times the RF pulse length of 2.5 μs . This condition maximizes the energy transfer from the klystron source to the cavity. Measurements made during these experiments clearly indicated that fields of about 50 MV/m were being reached in the cavity without breakdown.

In spite of technology ILC Linacs are pulsed

Luminosity is Proportional to Beam Power

Parameters to play with

Reduce beam emittance ($\varepsilon_x \cdot \varepsilon_y$) for smaller beam size ($\sigma_x \cdot \sigma_y$)

Increase bunch population (N_e)

Increase beam power
$$(P_b \propto N_e \times n_b \times f_{rep})$$

Increase beam to-plug power efficiency for cost

Pulsed Operation for Conversion Efficiency All the LCs must be pulsed machines to improve Plug Power to Beam Power conversion efficiency. As a result: C. Pagani - ISLCO8 - Lecture 1 duty factors are small Oak Brook, October 20, 2008 pulse peak powers can be very large <1 µs-1ms <10-200 ms **RF Pulses Bunch Train** 100 m - 300 km 1-300 nsec gradient with further input **Beam Loading** without input accelerating field pulse:

loading

filling

Develop SRF for a TeV Linear Collider

- Increase gradient by a factor of 5
- Reduce cost per MV by a factor 20 (New cryomodule concept and Industrialization)
- Make possible pulsed operation

Major advantages vs NC Technology

- Higher conversion efficiency: more beam power for less plug power consumption
- Lower RF frequency: relaxed tolerances and smaller emittance dilution

INF TESLA Technical Design Report: March 2001

Industrial Studies for TESLA TDR & E-XFEL

Overview on industrial studies for superconducting	Tlinacs (TESLA	VEEL CARE)	status dec 05 D Proch
			, 310103 000.00, 0.110011

	main issues	design	fabrication	cost	Contract	Status
	500 to of Nb sheet production		х	х	DESY	finished
tion	20000 cavities, welding		х	х	DESY	finished
tion	1000 cavities, welding		х	х	DESY	finished
tion	20000 cavities, hydroforming		х	х	DESY	finished
sing	20000 cavities, VT test, 1400°C, BCP		х	х	DESY	finished
nbly I	Assembly of 20000 cavities		х	х	DESY	finished
sing	Substitute BCP by EP, 1000 cavities		х	х	XFEL	in preparation
nbly II	Improvements to study 6, 1000 cavities	х	х	х	XFEL	started
	improvement to TTF3 design, 1000 couplers	х	х	Х	XFEL	in preparation
	Industrial aspects of EP		х	Х	CARE	in preparation
of components	Reliability aspects of critical components	х	х		CARE	in preparation
	Principle layout, prototype	х	х		CARE	finished

TESLA/XFEL Accelerator Components

The TESLA SRF Cavity, 1.3 GHz, 9-cell

Large number of cells with minimum reasonable bore radius for FF and tuning Odd number of cells with sligthly different end groups for trap modes
Large wall angle and round equator for surface treatments and multipatoring
2 HOM coupler to extract dangerous modes excited by the beam (1% DF)
Stiffening rings for Lorentz Forces, mechanical rigidity and eigen modes
New fabrication strategy required

1. SRF Concieved for CW Operation

2. TESLA Technology developped for Pulsing

3. What's needed to go back to CW

4. CW interpretation of the TESLA Technology

Duty Factor, DF is goin from 1% to 100%

Dynamic Cryo-losses follow DF if cavity parameters stay unchanged

But dynamic cryo-losses are also:

- proportional to E_{acc}²
- inversely proportional to Q₀

The reducttion of peak current and bunch charge require different RF sources but they are not affecting the cryo-power

- Beam current: from several mA peak to < 0.2 mA
- Buch charge, N_e: from several nC to < 0.2 nC</p>

A new set of working parameters is needed for CW, but utilising as much as possible all the technology already developped and qualified in the framework of the TESLA Collaboration.

Just changing the pulsed Klystrons with CW RF Sources and adapting coupling and control electronics, the existing EuXFEL design, based on the TESLA pulsed machine, would be modest because of a few bottle neck:

- Limited installed cryo-power
- Cryo-strings of 12 cryomodules served by a JT valve (240 W limit)
- Insufficient HOM cooling

Eacc < 7 MV/m < 6 GeV with ca. 100 Cryomodules

Building a new machine with a larger cryo-plant, the TESLA design can perform much better thank to a few simple adjustment addressed to overcome the major bottle neck while mantaining all the key technologies.

Eacc > 16 MV/m > 8 GeV with ca. 70 Cryomodules

Heat load at 2K for each cryomodule must not exceed 20 W.

W.- D. Möller, J. Sekutowicz

Each cryomodule houses 8 cavities

- → Cavity was designed for ca. 1% DF.
- End groups (FPC and HOM couplers) are cooled by means of heat conduction.

Dissipation on the HOM coupler antennas is the main sources of the heat for the end groups. W.- D. Möller, J. Sekutowicz

Limitations of the actual XFEL Module - 3

Experience with vertical tests (cavities immersed in the superfluid bath):

Without HOM antennae: E_{acc} up to 45 MV/m in the CW mode

With HOM antennae: E_{acc} up to 13 MV/m in the CW mode

Heating of the HOM couplers must not lead to quenching of the end-cells.

W.- D. Möller, J. Sekutowicz

A few guidelines for TESLA based CW XFELs

INFN

- Don't tuch the cavity design and fabrication metodology
- Improve surface treatment for higher Q₀ (lower surface resissance, R_s)
- Mantain the ancillaries (power couipler, tuner, etc) whenever possible
- **Re-design cryogenic distribution** to allow higher heat load at 2 K.
 - 1 JT valve per module, i.e. up to > 20 W/cavity
 - Slightly increase the size of the 2 phase pipes accordingly
- Implement touls needed for high Q₀:
 - Implement magnetic hygiene around the cavities
 - Improuve 2 K distribution for fast cool-down
- Suppress the lower part of the 5 K schield not needed for CW operation
- Remember that a 50% marging is normally added in all cryogenic plants

1. SRF Concieved for CW Operation

2. TESLA Technology developped for Pulsing

3. What's needed to go back to CW

4. CW interpretation of the TESLA Technology

TESLA / E-XFEL 1.3 GHz cavity

- Pulsed RF up to 10 Hz repetition rate.
 - 1.4 ms RF pulse length
- Longitudinal stiffness at about 3 kN/mm
- Required coarse tuner sensitivity at 1 Hz/step level
- Long piezo stacks required to provide LFD compensation.
 - 500-600 Hz detuning expected
 - About 2 μ m stroke at the cavity

VEE

	AFEL					
Type of accelerating structure		standing wave				
Accelerating mode		TM010, π-mode				
Fundamental frequency	frf [MHz]	1300				
Nominal gradient	Eacc [MV/m]	23.6				
Quality factor	Qo	> 10 ¹⁰				
Active length	<i>L</i> [m]	1.038				
Cell-to-cell coupling	k cc [%]	1.87				
Iris diameter	[mm]	70				
R/Q	[Ω]	1036				
Epeak/Eacc		2.0				
Bpeak/Eacc	[mT/MV/m]	4.26				
Tuning range	[kHz]	± 300				
$\Delta f / \Delta \Box L$	[kHz/mm]	315				
Lorentz-force detuning constant	K_{Lor} [Hz/(MV/m) ²]	1				
Q _{ext} of input coupler		4.6 × 10 ⁶				
Cavity bandwidth f/Q _{ext}	[Hz] FWHM	283				
Fill time	[µs]	780				
Number of HOM couplers		2				

Dumb-bells & Stiffening Rings

Cavity Fabrication Steps

Half cells are shaped by deep drawing.

Dumb bells are assemled by EB welding.

After proper cleaning eight dumb bells and two end group sections welded by EBW together

Different EBW Strategies

Horiz. Pos. EBW: lap joint (recess) DESY, AES, E.Zanon JLab, PAVAC)

Test Pieces for PAD Qualification

Test piece (TP) is composed by 2 cell with helium vessel, representing all pressure bearing parts and welding seams. It is built using the same welding parameters that will be used in the series production. Two EBW machines/company. Consequently, two test pieces had been built per company.

F Intermediate Steps for Frequency and Length

NFN

EDMS for Storing Data and Communication

All XFEL SC cavity documents (specifications, protocols, PED data etc.) recorded in EDMS. RI and E. Zanon have an access (to relevant data only)

Sources of dynamic detuning, Pulsed & CW

[Hz]

detuning

The Lorentz force detuning, LFD

- Lorentz force on shielding currents on cavity walls induced by electromagnetic fields, equivalent to EM radiation pressure.
- μ m level complex deformation of the cavity shape
- Detuning amplitude scales as E_{acc}², forward power instead as E_{acc}⁴!
- Depends on both cavity stiffness and on external stiffness
- Time-varying for pulsed operations
- Repetitive, synchronous to RF pulses

Microphonics, MP – Crucial for CW

- **Stochastic**, strongly correlated to He bath pressure fluctuations
- Low amplitude, about 30 Hz rms
- Main harmonics coming from the **cryomodule environment** are contributing:, typically pumps and any other vibrating element

E-XFEL Piezo assisted Tuner, OK for CW

Double asymmetric leverage

- lateral on the tank, on pick-up side
- Modified at DESY from the original CEA Saclay design
- Modified after TTF at DESY, now cavity is stretched by the tuner: cavity spring force is added to piezo preload
- Cold stepper motor drive unit
 - Harmonic Drive reduction gear
 - Screw-nut coupling to generate the linear motion
- Cold piezo actuators
 - Two stacks in a single preloading frame, to gain redundancy and also to profit of the spare one as a mechanical sensor

LLRF Based on Vector-sum not for CW

A single RF sorce feeding multiple cavities is possible also for CW, but because of the moderate power of few kW required for each cavity, **independent SSA sources are usually preferred**

Conversely The possible E-XFEL upgrade to CW would use the vector-sum scheme with one IOT per module

- TTF III Coupler has a robust and reliable design
- Succesfully installed in the European XFEL

Pending problems

- Long processing time: ~ 100 h
- Excessive flexibility and High cost
- Critical assembly procedure

Very Robust Cryomodule Design

TESLA →XFEL→ILC module design criteria

- maximize real estate gradient/cavity gradient
 - long cryomodules/cryo-units, short connections

Moderate cost per unit length

- simple design, based on reliable technologies
- low static heat losses in operation

Effective cold mass alignment strategy

room temperature alignment preserved at cold

Effective/reproducible assembling procedure

- clean room assembly just for the cavity string
- minimize time consuming operations (cost /reliability)

Cryomodule & Assembly as Crucial as Cavity

Required plug power for static losses < 5 kW / (12 m module)

The INFN Cryomodule for XFEL & ILC

TTF Cryomodule Performances

						Status:15-	Sep-04 R.L	ange -MK	S1-	
Designed	l, estir	nated	and me	asure	d stati	c Cryo-	Loads	TTF-	Module	s in TTF-Linac
Module	40/80 K	(W]		4.3K [W	v]		2 K [W]			Notes
Name/Type	Design	Estim.	Meas.	Design	Estim.	Meas.	Design	Estim.	Meas.	
Capture			46,8			3,9			5,5	Special
Module 1 I	115.0	76.8	90.0 *	21.0	13,9	23.0 *	4,2	2,8	6,0 *	Open holes in isolation
Modul1 rep. l	115.0	76.8	81,5	21.0	13,9	15,9	4,2	2,8	5,0	2 end-caps
Modul 2 II	115.0	76.8	77,9	21.0	13,9	13.0	4,2	2,8	4,0	2 end-caps
Module 3 II	115.0	76.8	72.0 **	21.0	13,9	48.0 *	*4,2	2,8	5,0	* Iso-vac 1E-04 mb, 2e-cap
Module 1* II	115.0	76.8	73.0	21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module 4 III	115.0	76.8	74	21.0	13,9	13.5	4,2	2,8	<3.5	1 end-cap
Module 5 III	115.0	76.8	74	21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module SS	115.0	~76.8	72.0	~21.0	~13.9	12.0	~4.2	>2,8	4,5	Special, 2 end-caps
Module 3* II	115.0	76.8	75	21.0	13,9	14	4,2	2,8	<3.5	1 end-cap
Module 2* II	115.0	76.8	74	21.0	13,9	14,5	4,2	2,8	<4,5	2 end-caps
Module 6 EP	Type III,	EP-Cavit	ies Goal:S	Solution c	lose to X	FEL Modul	es			(Assembly End-04??)
	Design	and estim	nated value	s by Tom	Peterse	n 1995 -Fer	milab-	Module	s under Te	est in TTF2-Linac

EuXFEL Cross Section - Pulsed

Pulsed operation

- High field dominant wrt minimum losses
- Lorentz force detuning impact the cavity design
- Active fast tuner required for high field
- High peak power coupler for high current

CW operation for XFELs (low average current)

- High Q, low losses, dominant wrt maximum field
- Microphonics can be crucial
- Active fast tuner considered for low current
- High average power coupler for high current

Other TESLA/ILC dependent features

- Very high filling factor : interconnections, tuner, magnets, etc
- Very low static losses : long cryo-strings

LCLS-II: TESLA Cryomodule adapted to CW

J.N. Galayda @ Linac2014

LCLS-II Cavity in its titanum He Vessel

27 LHe liters @ 2.0K/0.029 bar
10x greater heat load than XFEL/ILC
95 mm 'chimney'

- ~centrally located
- SS-Ti Ex-bonded joint
 Two fill lines

21

LCLS-II Cryomodule and TESLA/Eu-XFEL

Table 1: Major Features of the LCLS-II Cryomodules

Key	Major Features
Requirement	
Series	Continuous insulating vacuum; no
configuration	external parallel transfer line; cold
	beam pipe through the interconnect
0.5%	One 2 K supply valve in each module
longitudinal	for individual steady-state management
tunnel slope	of helium liquid level
Retention of	Active external magnetic field
high Q0	cancellation coils provide magnetic
cavity	shielding and residual field of $\leq 5 \text{ mG}$ at
performance	the cavities; a cool-down/warm-up
	cryogenic valve in the closed-ended
	cool-down circuit in each module
	provide high thermal gradient during
	cool-down through 9.2 K transition
	temperature to minimize flux trapping;
	using non-magnetic materials in the
	module
Seismic	Comply with SLAC seismic loading
safety	requirements under various
	accelerations and oscillatory modes
Removal of	Increased size and closed-ended 2-
high heat	phase pipe allows sufficient conduction
loads in CW	of the heat from the cavities through
operation	the superfluid helium; copper plating
	on beamline components; improved
	thermal intercepts at 5 K and 45 K

MECHANICAL DESIGN

The overall structural design of the LCLS-II cryomodule is similar to that of the TESLA-style module, shown in Fig. 3. The 5 K radiation shield is omitted not only for cost saving, but also due to the large dynamic heat at 2 K making such a thermal shield of a marginal value.

Figure 3: Cross-section of the cryomodule showing its major sub-assemblies.

T. Peterson et al. @ SRF 2015

Cavity Beamline String and Supports

Cavity Beamline String

The beamline string in each cryomodule consists of eight RF cavities. At the downstream end are combined focusing and steering magnets and a beam position monitor (BPM). The beamline terminates at each end with an all-metal gate valve. Between these two gate valves is a Beam line higher-order-mode (HOM) absorber. Active control of the cavity resonant frequency is provided by an end-lever tuner with motor and piezo-driven components. Each RF cavity is independently powered through a fundamental power coupler. The beamline components are shown in Fig. 4. Table 2 gives the descriptions of these components.

Cold Mass Support and Alignment System

The beam-line string is suspended under the helium gas return pipe (HGRP), which acts as the beamline backbone and is supported by three support posts to the vacuum vessel, shown in Fig. 5.

Figure 5: Cold mass support and alignment system.

Differential Thermal Contractions and Expansions

RF cavities are supported through four lugs on the helium vessel to the HGRP bottom hangers with Cshaped needle clamps, shown in Fig. 6. The cavities are anchored in position longitudinally via a clamp to an invar rod. The C-shaped needle clamps with bearing structure for the cavity, magnet package and gate valve mounts allow beamline frictionless movement with respect to the HGRP during thermal cycling.

Figure 6: Support system of cavity helium tank to the HGRP and invar rod.

1700

T. Peterson et al. @ SRF 2015

Cryogenic Circuits in the Cryomodule

Figure 7: Scheme of cryogenic flow in the module.

Figure 8: Cryogenic pipe positions and labels. T. Peterson et al. @ SRF 2015 Table 3: Cryogenic Circuits in the Cryomodule

Circuit	Description
2K	Provides 2K liquid helium to the cavities with a valve for liquid supply in each module. The RF cavities are maintained within 1.8 K to 2.1 K range by means of a stagnant bath of saturated liquid helium
Cool-down /warm-up	A cool-down/warm-up valve and closed-ended piping for cool-down /warm-up of individual module, to provide high thermal gradient during cool-down through 9.2 K transition temperature to minimize flux trapping
5 K	A helium circuit in the temperature range of 5 K to 8 K, provides a low temperature thermal intercept for the support posts, magnet current leads, RF power coupler, and instrumentation wires
45 K	A helium circuit in the temperature range of 35 K to 55 K, provides conductive thermal intercepts to the thermal radiation shield, and to tuner piezo actuator wires and housing, RF power coupler, HOM absorbers, cryogenic valves, and instrumentation wires

LCLS-II adapted for Fast Cooldown

LCLS-II Sensors on Prototypes

LCLS-II: Overall Cryomodule Performance

Successful demonstration of the first large scale nitrogen doped SRF cavity production by Industry Demontration of the beneficial effect of fast cooldown for rising Q_0 by flux expulsion

Dan Gonnella at TTC 2020

Single Thermal Shield for large 2-Phase pipe

Table	5:	Module	Thermal	Insul	lation	Design
THUTH	- · ·	TATO CHAIR	TTATTTAT	TTTO MAI	THEFT OTT	LANISII

Sub-system	Description
Insulating vacuum	Vacuum vessel provides an insulating vacuum in the range of $1.0 \ge 10^{-4}$ Pa to minimize convective heat loads to the cold mass
Thermal shield and MLI	The radiation heat loads are reduced by operating the shield at 45 K and wrapping it with 30 layer multilayer insulation (MLI) blankets; 10 layers of MLI are used on colder piping and helium vessels
Support with low thermal conduction	Thermal conduction is minimized by employing a low thermal conduction composite material G10 tube in the support posts

NFN

Connection Details close to E-XFEL

Module Interconnects

Figure 11: Cross-sectional views showing intermodule connections. Table 7: Requirements of each Sub-system Inter-connect

Sub-system	Type of Joint				
HGRP	Welding, pressure piping code compliance				
Cryogenic pipes (5 lines)	Welding, pressure piping code compliance				
Beamline tube	Particle free ultrahigh vacuum flange joints				
Thermal shield	Connection with fasteners, good thermal conduction				
Vacuum vessel	cuum vessel O-ring flange joints, vacuum seal				

Figure 12: Cryomodule adjustable support stand and its attachment to the tunnel floor.

T. Peterson et al. @ SRF 2015

Power Coupler Design and Integration

Marc Ross @ SRF 2015

New Split Quad Conduction Cooled

Marc Ross @ SRF 2015

Reviewed Piezo.assisted Tuner

Marc Ross @ SRF 2015

The LCLS-II Cryomodule – Tuner Ports

Thank you for your attention

IASF - CP Seminar #8 Shenzhen, 10 March 2023

Carlo Pagani