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An event as seen by the detectors

Run: 244918
Time: 2015-11-25 10:36:18

Colliding system: Pb-Pb
Collision energy: 5.02 TeV
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Getting information on what happened before

K Freeze-Out

To Teh T
)

T,= 1 fm/c

N J

@ Soft probes (low-pr hadrons): collective behavior of the medium;

@ Hard probes (high-pr particles, heavy quarks, quarkonia): produced in hard pQCD
processes in the initial stage, allow to perform a tomography of the medium
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A medium displaying a collective behavior

Pb-Pb events at 5, = 2.76 TeV

0.35F Centrality 20-40%
0.3+ : E ] i
0.25F H f f
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0.15] VISH2+1

(MCKLN, /s=0.20) @
n 3

Anisotropic azimuthal distribution of hadrons as a response to pressure gradients quantified by
the Fourier coefficients v,

dN N
d_¢:2_72 <1+2zﬂ:vncos[n(¢—1/fn)]+"'>

vy = (cos[n(¢p — n)])
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A medium inducing energy-loss to colored probes
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Medium-induced suppression of high-momentum hadrons and jets quantified through
the nuclear modification factor
AA
(th/de)
N(:()H> (th/de)PP

RAA =
{
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HF in HIC's: what do we want to learn? A bit of history...

Ultramikroskopie fiir Kolloide

Nach SIEDENTOPF un d ZsiGMoNDY.

mental data,) See Problem 4.5 (Data from Perrin, 1948.]

Einstein (1905) and Perrin (1909) study of Brownian motion: from the random walk of small
grains (a ~ 0.5um) in water one extracts the diffusion coefficient

(x?) o 2Dt
—00
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HF in HIC's: what do we want to learn? A bit of history...

Ultramikroskopie fiir Kolloide

Nach SIEDENTOPF un d ZsiGMoNDY.

i . from Perrin,

Einstein (1905) and Perrin (1909) study of Brownian motion: from the random walk of small
grains (a ~ 0.5um) in water one extracts the diffusion coefficient

(x*) ~ 2D.t
t—o0
and estimates the Avogadro number (proof of the granular structure of matter):

RT

Ke=R -
NaKs — M= Gaah.

Perrin obtained the values Ny ~ 5.5 — 7.2 - 10?3,
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HF in HIC's: what do we want to learn? A bit of history...

Ultramikroskopie fiir Kolloide

Nach SIEDENTOPF un d ZsiGMoNDY.

i . from Perrin,

Einstein (1905) and Perrin (1909) study of Brownian motion: from the random walk of small
grains (a ~ 0.5um) in water one extracts the diffusion coefficient

(x?) o 2Dt
—00

and estimates the Avogadro number (proof of the granular structure of matter):
RT
NaKe=R — Np=——
6man Ds
Perrin obtained the values A4 ~ 5.5 — 7.2 - 10?3, We would like to derive HQ transport
coefficients in the QGP with a comparable precision and accuracy! 7/24



We do not have a microscope!
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Transport coefficients can be accessed indirectly, comparing transport predictions with different
values of momentum broadenig
o 2772

"~ D,
with experimental results for momentum (left) and angular (right) HF particle distributions
(figure from A.B. et al., JHEP 05 (2021) 279)
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Where do we stand?

- [ IQCD, L. Altenkort et al, PRD 103 (2021) 014511

- IQCD, H.T. Ding et al, PRD 86 (2012) 014509

- I oCD, D. Baneriee etal, PRD 85 (2012) 014510
- I <7/R. PRL 118 (2017) 212301
- I AiicE PLB 813 (2021) 136054

- I AucE, JHEP 01 (2022) 174 m
PR P I T N s 1 I R I T T T NI T N AN N
2 4 6 8 10 12 14 16 18 20

21D, T, at T, = 155 MeV

Still far from accuracy and precision of Perrin result for Na...
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Still far from accuracy and precision of Perrin result for Na...
Why such large systematic uncertainties?
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HQ transport: the relativistic Langevin equation

HQ diffusion through the fireball simulated via the relativistic Langevin equation (A.B. et al.,
Nucl.Phys. A831 (2009) 59)

Ap’ : .
Ap = op)p+ €(t)
—— S~
determ. stochastic
with the properties of the noise encoded in
6tt’

Py =0 (£(p)¢(py))=b"(p) bi(p)=r(p)p'F + 11 (p)(67—p'p)

At
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HQ transport: the relativistic Langevin equation

HQ diffusion through the fireball simulated via the relativistic Langevin equation (A.B. et al.,
Nucl.Phys. A831 (2009) 59)

Ap’ : :
A mo(p)p'+ €'(t)
—— ~—~—
determ. stochastic
with the properties of the noise encoded in
6tt'

(€(pe)) =0 (P (P))=b"(P) 7 B (P)=r(P)B'F + i1 (p) (6" PP
Transport coefficients describe the HQ-medium coupling

o 1(Ap7) (aph)
Mom m diffi == ; o= A ;
@ Momentum diffusion k| > ; and K| L

@ Friction term (dependent on the discretization scheme!)

wor IR 1 [, 5 0ki(p) | d—1k(p)—ri(p)
b (p)_2TEp E2 I-vI)—He +— V2

fixed in order to assure approach to equilibrium (Einstein relation)
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Asymptotic approach to thermalization

dN/dp

— 1QCD, t=I fm/c
— 1QCD, t=4 fm/c
1QCD, t=8 fm/c
— 1QCD. t=12 fm/c
— 1QCD, t=16 fm/c
1QCD, t=20 fm/c
+ thermal

0,14

0,001

Charm quarks

Gubser flow

q=0.15 ™, T,=6

Initial spectrum: FONLL @ 5.02 TeV/

o

2
p (GeVic)

4
Py (GeV)

Validation of the model (figures adapted from Federica Capellino master thesis):

@ Left panel: evolution in a static medium

@ Right panel: decoupling from an expanding medium at Tro =160 MeV

For late times or very large transport coefficients HQ's approach local kinetic equilibrium with the

medium. For an expanding medium high-pr tail remains off equilibrium.




Some results: D-meson v» and v3 in Pb-Pb

s(x,y) ( fm ) 0-10% Pb-Pb coll.

~
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Pb-Pb, |/s,=5.02 TeV Centrality 0-10%

POWLANG - HTL, charm hadrons
""""" POWLANG - IQCD, charm hadrons
= cMs, D', prelim., only stat. unc. [CMS-PAS-HIN-16-007]

(&3]

y (fm)
o

o
S S I I N B
0
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Transport calculations carried out in , with hydrodynamic background
calculated via the ( ) starting from EBE Glauber

Monte-Carlo initial conditions: v» # 0 in central collisions, v3 # 0
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HQ momentum diffusion: lattice-QCD

From the non-relativistic limit of the Langevin equation one gets
dPi i i : RV if ’
D = —op +€(), with (€08 =078t — ¢)n

hence &k = %/ - dt<€i(t)§i(0)>HQ = %/ Oodt<Fi(t)Fi(0)>HQ

—o0 —00 —_—
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HQ momentum diffusion: lattice-QCD

From the non-relativistic limit of the Langevin equation one gets

dp’ ) . . . ;
> = —op' + (), with (D)) =d70(t — ¢)n
1 [t . . 1 [T ) )
hence 5= 3 / (e (D O))a = 5 / dt (F (1)F/(0))mq
—o0 —c0 —_———
=D>(t)
Lattice-QCD simulations provide Euclidean (t = —iT) electric-field (M = oo) correlator

(Re Tr[U(B, T)gE" (7, 0) U(7,0)gE' (0, 0)])
(Re Tr[U(3,0)])

DE(T) = —

How to proceed?
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hence 5= 3 / (e (D O))a = 5 / dt (F (1)F/(0))mq
—o0 —c0 —_———
=D>(t)
Lattice-QCD simulations provide Euclidean (t = —iT) electric-field (M = oo) correlator

(Re Tr[U(B, T)gE" (7, 0) U(7,0)gE' (0, 0)])
(Re Tr[U(3,0)])

DE(T) = —
How to proceed? x comes from the w — O limit of the FT of D~. In a thermal ensemble
o(w)=D>(w)—D<(w) = (1 — e 7*)D>(w), so that
D~ (w) i 1 o(w) 1T

= lim ——= = = ~ ——o(w
= 3 w'Lno31—e*/3w wao?)wg(u)
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HQ momentum diffusion: systematic uncertainties

The spectral density o(w) has to be extracted from the euclidean correlator

_ ["° dw cosh(r — B/2)
DE(T)_/O 27 sinh(Bw/2) )

An ill-posed problem! Dg(7) known for a limited set (~ 20) of points, while one wishes to obtain a
fine scan of the the spectral function o(w;). A direct x>-fit is not applicable.
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An ill-posed problem! Dg(7) known for a limited set (~ 20) of points, while one wishes to obtain a
fine scan of the the spectral function o(w;). A direct x-fit is not applicable. Possible strategies:

@ Bayesian techniques (Maximum Entropy Method)
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HQ momentum diffusion: systematic uncertainties

The spectral density o(w) has to be extracted from the euclidean correlator
*°° dw cosh(t — B/2)
D = —_—
e(7) /o 21 sinh(Bw/2) o(w)
An ill-posed problem! Dg(7) known for a limited set (~ 20) of points, while one wishes to obtain a
fine scan of the the spectral function o (w;). A direct x°-fit is not applicable. Possible strategies:
@ Bayesian techniques (Maximum Entropy Method)

@ Theory-guided ansatz for the behaviour of o(w) to constrain its functional form (new results for
Nr=2+1 HotQCD, PRL 130 (2023) 23, 231902)

1034208 model model 15 U% fias 0,70 |
T2 -— max - _ .
N el " Fmaxnro Fa' =7.06GeV,

== smaxnLo 19.51 V8TR/T = 0.3

srlnam_o L] Fmaxr,o
1024 ~7 PlawnLo |

oo plawpo " Fsmaxapo 100

L Fsmaxpo -5 {
™ rplawnpo 504 {
L] Fplawy o 2.5
3 .5
r/T
10° T T W/T ! / ! J J 0.04— . . T/T
10! 10° 10 102 0 5 10 15 10 5 2.0
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Systematic uncertainties Il: hadronization
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Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models
tuned to reproduce ete™ data
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Systematic uncertainties Il: hadronization
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Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models

tuned to reproduce ete™ data

@ pattern similar to light hadrons
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Systematic uncertainties Il: hadronization

A T T
o o1 pp, V5 = 5.02 TeV —
<
e~ ALICE, [y| <05 At
~=- CMS, |y| < 1.0 (PLB 803(2020) 135328) | . ¢
| e | (90
ALICE: Phys. Rev. C 104, 054905 | @

HHALICE: Phys. Rev. Lett. 127, 202301

%%#ﬁf_ﬁ_f
=D

Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models
tuned to reproduce ete™ data

@ pattern similar to light hadrons

@ baryon enhancement observed also in pp collisions: is a dense medium formed also there?
Breaking of factorization description in pp collisions

dO’h?é Z fa(Xl) fb(Xz) ® dGap—cex ®DC*>/7C (Z)
x 15/24



Hadronization models: common features

Grouping colored partons into color-singlet structures: strings (PYTHIA), clusters (HERWIG),
hadrons/resonances (coalescence/recombination).
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Hadronization models: common features

Grouping colored partons into color-singlet structures: strings (PYTHIA), clusters (HERWIG),
hadrons/resonances (coalescence/recombination). Partons taken
k, m

string 1
k

high—pT parton

@ in “elementary collisions” (what is elementary?): from the hard process, shower stage,
underlying event and beam remnants;
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Hadronization models: common features

Grouping colored partons into color-singlet structures: strings (PYTHIA), clusters (HERWIG),
hadrons/resonances (coalescence/recombination). Partons taken

@ in “elementary collisions” (what is elementary?): from the hard process, shower stage,
underlying event and beam remnants;

@ in heavy-ion collisions (only?): from the hot medium produced in the collision.
NB Involved partons closer in space in this case and this has deep consequencel! 1624



Local Color Neutralization (LCN): basic ideas

Both in AA and pp collisions a big/small deconfined fireball is formed.
Around the QCD crossover temperature quarks undergoes
recombination with the closest opposite color-charge (antiquark or
diquark, favoring baryon production).

@ Why? screening of color-interaction, minimization of energy
stored in confining potential

@ Implication: recombination of particles from the same fluid cell
— Space-Momentum Correlation (SMC), recombined partons
tend to share a common collective velocity
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Local Color Neutralization (LCN): basic ideas

Both in AA and pp collisions a big/small deconfined fireball is formed.
Around the QCD crossover temperature quarks undergoes
recombination with the closest opposite color-charge (antiquark or
diquark, favoring baryon production).

@ Why? screening of color-interaction, minimization of energy
stored in confining potential

@ Implication: recombination of particles from the same fluid cell
— Space-Momentum Correlation (SMC), recombined partons
tend to share a common collective velocity

Color-singlet structures are thus formed, eventually undergoing decay
into the final hadrons: 2 — 1 — N process, usually a charmed hadron
plus a very soft particle

@ Exact four-momentum conservation;

@ No direct bound-state formation, hence no need to worry about
overlap between the final hadron and the parent parton

wave-functions 17/24



LCN in AA collisions: charmed-hadron ratios

o IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII o IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII o IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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Rt 08| ]
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@ Enhanced HF baryon-to-meson ratios up to intermediate prt nicely reproduced, thanks to
formation of small invariant-mass charm+diquark clusters®

@ Smooth approach to e"e™ limit (Al /D%~ 0.1) at high p7: high-M_ clusters fragmented
as Lund strings, as in the vacuum

1AB. et al., EPJC 82 (2022) 7, 607

18/24



LCN in AA collisions: elliptic flow
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Mass ordering of the v, coefficient!
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LCN in AA collisions: elliptic flow
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Addressing pp collisions...

solxy) (fm ™), ev 401 so(xy) (fm™3), ev 901
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QQ production biased towards hot spots of highest multiplicity events

25

0.5

20/24



Addressing pp collisions...

NQQbar(%y), ev 401 NQabar(X.y), ev 901
60 10
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QQ production biased towards hot spots of highest multiplicity events
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Results in pp: particle ratios

T T T L e L A A P B AL AR
E| o 4r ! S04 PP, Pb-Pb, {s,=5.02 TeV ]

B ¥
oL * ALICE,pp
f = ALICE, Pb-Pb 0-10%

POWLANG
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First results for particle ratios?:
@ POWHEG+PYTHIA standalone strongly underpredicts baryon-to-meson ratio

@ Enhancement of charmed baryon-to-meson ratio qualitatively reproduced if
propagation+hadronization in a small QGP droplet is included

@ Multiplicity dependence of radial-flow peak position (just a reshuffling of the momentum,
without affecting the yields): (u1)™P & 0.33, (uy )20 ~ 0.53, (u) )91 ~ 0.66

2In collaboration with D. Pablos, A. De Pace, F. Prino et al., PRD 109 (2024) 15L011501
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Results in pp: elliptic flow

N SRR A T T SO e ey
0.1 powLANG Min Bias, HTL  —] [ PowLANG o quarks |
0.0sL D' meson ToT et 0.12] pp, 15=5.02 TeV L 3
08 27 Hghmitiooo ] [ High Mutiplicity (0-1%) - .
0.06— —
_0.02 4
-0.04— | cus, PPN, 2100 = bl
,O_Gimmmu\mwmmuwmH\’ e T N .
012 3 4 5 6 8 0o 1 2 3 4 5 8 7 8
P, (GeVic) Py (GeV/c)

Response to initial elliptic eccentricity ({e2)™P a2 (e)™P~0.31) — non-vanishing v, coefficient

@ Differences between minimum-bias and high-multiplicity results only due to longer time
spent in the fireball ({71)™P~1.95 fm/c vs (7)™ ~2.92 fm/c)

@ Mass ordering at low pr (Mgq > Mg)

@ Sizable fraction of v, acquired at hadronization
22/24



Relevance to quantify nuclear effects
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@ Slope of the spectra in pp collisions better described including medium effects
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Relevance to quantify nuclear effects

e ] 1.6
o | Po-Pb, 5,,=5.02TeV  POWLANG IQCD | o€ | Po-Pb, (5,,=5.02TeV  POWLANG HTL
r A F A
1.4-Centrality 0-10% 7 g’ t4F-centraly 0-10% 34

e DY D
e -

o - c
~ D°, PYTHIA frag pp ref « D% PYTHIA frag pp re

ALICE ALICE
0.8 = average D°,D*, D* 0.8 = average D°,D*, D*
o D

0.6 0.6

0.4

04

02 = 02
07\\‘\\\‘\\\\\\\‘\\\\\\\\\\\\\\\7 07\\\‘\
0 2 4 6 8 10 12 14 16 0

P, (GeV/c)

@ Slope of the spectra in pp collisions better described including medium effects

@ Inclusion of medium effects in minimum-bias pp benchmark fundamental to better
describe charmed hadron Raa, both the radial-flow peak and the species dependence
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To summarize

@ What we learnt: A rich set of experimental data shows evidence of at least partial kinetic
equilibration of charm in heavy-ion collisions and of the breaking of universality of the
hadronization process;

@ What is only partially known: the transport coefficients

o lattice-QCD calculations getting better (e.g. from Nf =0 to Nf =2+ 1), BUT
unavoidable systematic uncertainties;

o theory-to-data comparison (e.g. Bayesian analysis) has to focus on kinematic
windows where transport equations are reliable (e.g. beauty at low-p7): just a
matter of time to improve;

e systematic uncertainty from hadronization: if recombination occurs, same flow of HF
hadrons with smaller partonic transport coefficients. Modified hadrochemistry

(integrated yields) allows one to quantify the relevance of recombination, both in pp
and AA.

@ The same Local Color-Neutralization (LCN) model developed to describe
medium-modification of HF hadronization in AA collisions has been applied to the pp
case. Consistent description of several HF observables: shape of the pr-distributions,

enhanced baryon-to-meson ratio, charmed-hadron Ras and non-vanishing v, coefficient, 20/2



