Contribution ID: 7 Type: not specified

Beyond Protons: Unlocking ⁶⁷Cu Production with Triton Beams for Next-Generation Theranostics

Thursday 2 October 2025 16:40 (30 minutes)

The radionuclide 67 Cu is a highly attractive theranostic agent, combining β^- emission for radiotherapy with γ -rays suitable for SPECT imaging. However, achieving efficient and clean cyclotron-based production remains a major obstacle. In this study, we explore an alternative nuclear reaction route using triton beams on zinc targets—specifically 68 Zn(t,x) 67 Cu—as part of the NUCSYS CSN4, CUPRUM-TTD CSN5, and SPESMED CSN3 initiatives. Given the absence of experimental cross-section data for these triton-induced reactions, we employed comprehensive TALYS simulations across 24 model combinations, generating uncertainty bands and benchmarking against the well-documented 68 , 70 Zn(p,x) 67 Cu proton-induced reactions.

Our simulations predict that triton-based reactions can outperform proton routes by more than an order of magnitude in yield for E > 30 MeV, while also significantly reducing stable copper contamination and cooling times. Notably, triton irradiation requires substantially thinner targets, translating into lower consumption of costly enriched material. These findings position triton-induced production as a superior and scalable route to 67 Cu, pending experimental validation. This work paves the way for novel strategies in the production of key theranostic radionuclides, potentially transforming their accessibility for nuclear medicine.

Authors: BARBARO, Francesca (Dept. of Physics and Astronomy, University of Padova and INFN sezione di Padova); CANTON, Luciano (Istituto Nazionale di Fisica Nucleare); FREZZATO, Giovanni (Dept. of Physics and Astronomy, University of Padova); LASHKO, Yuliia (INFN sezione di Padova, Italy and Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine); ZANGRANDO, Lisa (INFN sezione di Padova)

Presenter: CANTON, Luciano (Istituto Nazionale di Fisica Nucleare)

Session Classification: Short contributions (V)