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Introduction

Hyperon puzzle in Neutron Stars 

Hypernuclei studies

MOTIVATIONS

Develop a local potential model for the  interaction, in a contact EFT approachΛN
Aim of the project

Simple model

Easy to handle numerically 

(Also suitable computationally expensive tasks)

Consistent with a well 
tested theory (QCD)

EFT  perturbative expansion 
allows theoretical error 
estimation

→

Many applications to different research fields



·

In EFT even pions can be considered high-energy dof  interaction described only by contact termsπ ⇒

quarks, gluons 
 GeV≳ 1

QCD
nucleons, pions 

 MeV∼ 100

χEFT

nucleons 
 MeV∼ 10

πEFT

Adapted from APS/Alan Stonebraker
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POTENTIAL MODEL DERIVATION
“Weinberg-ized” Pionless Effective Field Theory

Introduction

Keep same power counting as  χEFT

Remove diagrams that involve pion 
exchanges  only contact terms →

Approach used in Schiavilla et al. (2021)
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⟶

q = p′￼− p ,
k = (p + p′￼)/2
S = (σΛ + σN)/2 ,
D = (σΛ − σN)/2

SΛN (q) = 3 σΛ ⋅ q σN ⋅ q − q2σΛ ⋅ σN .

VLO
ΛN = CS + CT (σΛ ⋅ σN) ,

VNLO
ΛN = C1q2 + C2q2(σΛ ⋅ σN) + iC3S ⋅ (k × q)

+C4SΛN (q) + iC5D ⋅ (k × q)

7 LECs

⟶
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To regularize the interaction  multiply  by a regulator 
function , as done in Schiavilla et al. (2021)

⟶ VΛN
F̃(k)
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F(r) =
1

π3/2R0
3 exp (−

r2

R0
2 )
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Investigated cutoff parameter values R0 ∈ [1.5, 2.5] fm

F(r) =
1

π3/2R0
3 exp (−

r2

R0
2 )

POTENTIAL MODEL CROSS SECTION FITTING PROCEDURE RESULTS

To regularize the interaction  multiply  by a regulator 
function , as done in Schiavilla et al. (2021)

⟶ VΛN
F̃(k)

F̃(k) = exp(−
R0

2k2

4 )

⟶

Λ0 ∈ [158, 263] MeV

Fourier Transform
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VLO
ΛN = [CS + CT (σΛ ⋅ σN)] F(r) ,

VNLO
ΛN = ∑

i

vi (r) 𝒪i ,  with 𝒪i = 1, σΛ ⋅ σN, SΛN( ̂r), L ⋅ S, L ⋅ D Radial functions containing combinations of 
 and LECs F(r), F′￼(r), F′￼′￼(r) (C1, ⋯, C5)

Fourier transform of the regularized potential in momentum space to obtain  in coordinate spaceVΛN

SΛN ( ̂r) = 3 σΛ ⋅ ̂r σN ⋅ ̂r − σΛ ⋅ σN ,
S = (σΛ + σN)/2 ,
D = (σΛ − σN)/2 .

POTENTIAL MODEL CROSS SECTION FITTING PROCEDURE RESULTS
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 and LECs F(r), F′￼(r), F′￼′￼(r) (C1, ⋯, C5)

fixed through fitting procedure to 
experimental data

⟶
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Available experimental data to perform the fit:  elastic scattering cross sectionΛp



ψα
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c (q, r) =
M

∑
i=1

dα,i (q) fi(r)
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as sum of plane wave and outgoing 
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Find an appropriate  function to be minimized, in order to fix LECs valuesχ2
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NN online archive 
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i ]2
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Find an appropriate  function to be minimized, in order to fix LECs valuesχ2

 functionχ2

CROSS SECTION FITTING PROCEDURE RESULTSPOTENTIAL MODEL

FITTING PROCEDURE

 First attempt: Does not work:  at LO when VΛN = 0 S = 1χ2 = ∑
i

[σth
i (CS, CT, C1, . . . , C5) − σexp

i ]2

err(σexp
i )2

 Second attempt: constraint on scattering length

χ2 = ∑
i

[σth
i (CS, CT, C1, . . . , C5) − σexp

i ]2

err(σexp
i )2 + ∑

j=s,t

[ath
j (CS, CT, C1, . . . , C5)−aexp

j ]
2

err(aexp
j )2

“Experimental” data for  scattering 
length from Mihaylov et al. (2024) 

Λp

Solves issue 
in  caseS = 1
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Scattering lengths

Adapted from Mihaylov et al. (2024)

CROSS SECTION FITTING PROCEDURE RESULTSPOTENTIAL MODEL

FITTING PROCEDURE

9

No experimental data available for scattering lengths

Mihaylov D.L, Haidenbauer J., 
Mantovani Sarti V., (2024)

First combined analysis low-energy  
scattering

pΛ

Best set of scattering lengths 

 fm.f0, f1 = (2.1,1.56) to (3.34,1.18)

cross section + correlation data (ALICE)

Physics Letters B 850 (2024) 138550

3

D.L. Mihaylov, J. Haidenbauer and V. Mantovani Sarti

Fig. 1. Exclusion plots for the singlet (𝑓0) and triplet (𝑓1) pΛ scattering lengths based on the analysis of the cross section data (left panel) and on the combined 
analysis of cross section and correlation data (right panel). See text for details.

significantly improving the sensitivity of the correlation function to the 
interaction potential. In the present analysis, we perform a pre-fit of 
the pp correlations using the Argonne 𝑣18 potential [52], following 
the same procedure as described in [49]. However, out of the seven 
available 𝑚T bins, we have omitted the last two due to issues with con-
vergence at very low 𝑘. To eliminate any bias related to the assumption 
of a common source, the extracted source parameters from the pre-fit of 
the pp correlations are used as an initial guess for the pΛ system, after 
which they are re-fitted alongside the six interaction parameters, allow-
ing a variation of 3 standard deviations (𝜎). Finally, we verify that the 
parameters converge to a proper local minimum. The remaining details 
on both the pp and pΛ fits, such as the inclusion of momentum resolu-
tion, feed-down, non-femtoscopic baseline, etc., are mirrored from the 
analysis of the same data described in [49].

The first objective of the present analysis is to quantify the allowed 
scattering lengths in the spin singlet/triplet channels (𝑓0, 𝑓1), which 
can be accomplished by considering potentials of varying strengths in 
the CATS framework. Note that we use the sign convention where at-
tractive/repulsive interactions are characterized by positive/negative 
scattering lengths. Both the cross section and the correlation function 
are composed of a weighted sum of the two channels, with respective 
weights of 1/4 and 3/4. The interactions in the two spin states are at-
tractive and exhibit similar correlation shapes that differ in magnitude. 
Due to this similarity, the present analysis is not particularly sensitive to 
the individual scattering lengths of each spin channel, and a unique so-
lution is not expected. Nevertheless, requiring that the two-body forces 
alone produce a bound hypertriton puts a lower limit on the strength 
of the interaction in the spin singlet channel. A concrete estimate is 
difficult to provide, however, judging from results for the hypertriton 
separation energy from Faddeev calculations employing modern YN po-
tentials [14,15], values of 𝑓0 ≲ 2.0 fm are not realistic. Assuming that 
the hypertriton is solely bound by three-body forces is likewise unre-
alistic given the present estimates [53] and explicit calculations [54]
of their possible contribution. In view of this the scan is performed for 
𝑓0 > 1.6 fm. The lack of a unique solution leads to convergence issues in 
the fit procedure. To address this problem, multiple fits are performed, 
each constrained within a specific small region of 𝑓0 and 𝑓1 values. 
The procedure is repeated until the entire desired parameter space is 
scanned. The best 𝜒2 of each individual step is saved, allowing the 
creation of an exclusion plot for 𝑓0 and 𝑓1. The estimator for the ex-
clusion is the total 𝜒2 = 𝜒2

scattering +𝜒2
femtoscopy. The 𝜒2 is converted into 

a number of standard deviations (n𝜎) with respect to the best solution, 
accounting for a total of 9 degrees of freedom [55].

4. Results and discussion

The exclusion plot based on results with the Usmani potential is 
shown in Fig. 1. The axes correspond to the scattering lengths in the 
singlet 𝑓0 and triplet 𝑓1 channel, while the color code contains infor-

mation on the compatibility with the data. The left panel is based on 
the analysis of only the cross section, while the right panel is the fi-
nal result based on the combined analysis of femtoscopic and scattering 
data. The gray dashed lines mark the 1, 2 and 3𝜎 exclusion regions. 
The black solid line, in the right panel, marks the border of a 3𝜎 de-
viation with respect to the scattering data alone and is identical to the 
outer most dashed line from the left panel, while the shaded area de-
picts the region of even worse compatibility. As expected, there is a 
strong correlation between 𝑓0 and 𝑓1, and the inclusion of femtoscopy 
data into the analysis leads to a significant decrease in uncertainties. 
Values of 𝑓0 > 3.34 fm or 𝑓1 < 1.18 fm are disfavored by the data. The 
lower (upper) bound of 𝑓0 (𝑓1) cannot be constrained within the in-
vestigated parameter space. Fig. 1 contains two vertical bars depicting 
the values of the scattering parameters based on the NLO19 [14] and 
the next-to-next-to-leading order N2LO [15] potentials. The size of the 
markers represents the uncertainties related to the employed regulator 
(cutoff Λ) in the chiral NY potentials. Both of these values are located 
approximately in the middle of the phase space region allowed by the 
scattering data alone, which is not surprising, as the LECs of those po-
tentials have, up to now, been fitted to that data. Nevertheless, the 
enhanced sensitivity of the combined analysis shows that the predicted 
scattering lengths are disfavored by as much as 4.8𝜎 in the case of 
N2LO. The NLO19 interaction is overall better in line with the present 
analysis, nevertheless, a systematic deviation of ca. 1-3 𝜎 is observed, 
depending on the cutoff value. Indeed, the predictions by the poten-
tial with cutoff Λ = 600 MeV of 𝑓0 = 2.91 fm and 𝑓1 = 1.41 fm are in 
relatively good agreement, resulting in a deviation from the best solu-
tion of 1.1𝜎. On the other hand, a best fit of 𝑓1, keeping 𝑓0 = 2.91 fm 
fixed, yields 𝑓1 = 1.32 ± 0.08 fm. Clearly, due to the strong correlation 
between the two parameters, changing the value of 𝑓0 will influence 
the outcome for 𝑓1. For example, fixing 𝑓0 = 2.1 fm implies the value 
𝑓1 = 1.56 ± 0.11 fm. Considering the combined analysis (right panel in 
Fig. 1), the best set of solutions can be approximated by the relation

𝑓1 ≈ 2.2 fm− 0.3𝑓0 (±0.1 fm) (5)
for 𝑓0 ∈ (2.0, 2.9) fm. Table 1 in the Appendix provides multiple exam-
ples for scattering parameters and their compatibility to the data. These 
results indicate an overall less attractive interaction compared to the 
published chiral potentials.

As a next step we explore how this less attractive NΛ interaction 
affects predictions for the single-particle potential 𝑈Λ at nuclear sat-
uration density 𝜌0 and its density dependence in general, considering 
the relevance of this quantity for the role of the Λ hyperon in neutron 
stars [9,10]. In Fig. 2, we present results for the single-particle potential 
𝑈Λ(𝑘Λ = 0) as a function of the nuclear matter density 𝜌, evaluated self-
consistently within a conventional 𝐺-matrix calculation. We employ 
the formalism described in detail in Refs. [31,56], where the so-called 
continuous choice is taken for the intermediate states, and the N3LO 
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shown in Fig. 1. The axes correspond to the scattering lengths in the 
singlet 𝑓0 and triplet 𝑓1 channel, while the color code contains infor-

mation on the compatibility with the data. The left panel is based on 
the analysis of only the cross section, while the right panel is the fi-
nal result based on the combined analysis of femtoscopic and scattering 
data. The gray dashed lines mark the 1, 2 and 3𝜎 exclusion regions. 
The black solid line, in the right panel, marks the border of a 3𝜎 de-
viation with respect to the scattering data alone and is identical to the 
outer most dashed line from the left panel, while the shaded area de-
picts the region of even worse compatibility. As expected, there is a 
strong correlation between 𝑓0 and 𝑓1, and the inclusion of femtoscopy 
data into the analysis leads to a significant decrease in uncertainties. 
Values of 𝑓0 > 3.34 fm or 𝑓1 < 1.18 fm are disfavored by the data. The 
lower (upper) bound of 𝑓0 (𝑓1) cannot be constrained within the in-
vestigated parameter space. Fig. 1 contains two vertical bars depicting 
the values of the scattering parameters based on the NLO19 [14] and 
the next-to-next-to-leading order N2LO [15] potentials. The size of the 
markers represents the uncertainties related to the employed regulator 
(cutoff Λ) in the chiral NY potentials. Both of these values are located 
approximately in the middle of the phase space region allowed by the 
scattering data alone, which is not surprising, as the LECs of those po-
tentials have, up to now, been fitted to that data. Nevertheless, the 
enhanced sensitivity of the combined analysis shows that the predicted 
scattering lengths are disfavored by as much as 4.8𝜎 in the case of 
N2LO. The NLO19 interaction is overall better in line with the present 
analysis, nevertheless, a systematic deviation of ca. 1-3 𝜎 is observed, 
depending on the cutoff value. Indeed, the predictions by the poten-
tial with cutoff Λ = 600 MeV of 𝑓0 = 2.91 fm and 𝑓1 = 1.41 fm are in 
relatively good agreement, resulting in a deviation from the best solu-
tion of 1.1𝜎. On the other hand, a best fit of 𝑓1, keeping 𝑓0 = 2.91 fm 
fixed, yields 𝑓1 = 1.32 ± 0.08 fm. Clearly, due to the strong correlation 
between the two parameters, changing the value of 𝑓0 will influence 
the outcome for 𝑓1. For example, fixing 𝑓0 = 2.1 fm implies the value 
𝑓1 = 1.56 ± 0.11 fm. Considering the combined analysis (right panel in 
Fig. 1), the best set of solutions can be approximated by the relation

𝑓1 ≈ 2.2 fm− 0.3𝑓0 (±0.1 fm) (5)
for 𝑓0 ∈ (2.0, 2.9) fm. Table 1 in the Appendix provides multiple exam-
ples for scattering parameters and their compatibility to the data. These 
results indicate an overall less attractive interaction compared to the 
published chiral potentials.

As a next step we explore how this less attractive NΛ interaction 
affects predictions for the single-particle potential 𝑈Λ at nuclear sat-
uration density 𝜌0 and its density dependence in general, considering 
the relevance of this quantity for the role of the Λ hyperon in neutron 
stars [9,10]. In Fig. 2, we present results for the single-particle potential 
𝑈Λ(𝑘Λ = 0) as a function of the nuclear matter density 𝜌, evaluated self-
consistently within a conventional 𝐺-matrix calculation. We employ 
the formalism described in detail in Refs. [31,56], where the so-called 
continuous choice is taken for the intermediate states, and the N3LO 
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Future developments 
Develop a local EFT potential model, with  coupling 

Three-body forces  

Hypernuclei studies and  correlation functions 

Studies on NS EoS

χ ΛN − ΣN
(YNN, YYN, YYY)

ppΛ

In summary:  

Developed a local contact potential model for the  interaction up to NLO 

 Sophisticated fitting procedure 

 Compatibility with scattering data and scattering lengths 

Further analysis on different values of the cutof

ΛN
−
−

CONCLUSIONS
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High energy effects included in contact terms 
that depend on low energy constants (LECs) 

Cutoff scale ( )  defines range of applicability of the theoryΛχ →

→

→
LECs determined through fit to 

experimental data

Lagrangian expanded in powers of  

 Organization in leading and sub-leading terms (LO, NLO, …)

Q/Λχ < 1
⇒

QCD

Λχ ∼ 1GeV

POTENTIAL MODEL DERIVATION
Chiral Effective Field Theory
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EFTχ
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Defining energy limits

CROSS SECTION FITTING PROCEDURE RESULTSPOTENTIAL MODEL

FITTING PROCEDURE

Partial wave projection of the potential, in momentum space

Semi classical approach to compute  threshold for LOpLAB

V(1S0) = 4π(CS−3CT) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)( p2 + p′￼2) ,

V(3S1) = 4π(CS + CT) + π
3
2

(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)( p2 + p′￼2) .

LO LECs

⟶

ℓ ℏ = pLAB b

 to exclude P-waves and higher-order partial wavesℓ = 1

, b ∼ 1 fm ℏc = 197.33 MeV fm

}
pLAB ∼ 200 MeV ⇒ ECM ∼ 15 MeV


