

3- α and 4- α particle systems and reactions in near-zero range Effective Field Theory

Elena Filandri

ECT*-FBK

3 October, 2025 Cortona

- Motivations
- EFT inspired potential
- Bound States with A = 3,4 Bosons
- 4 Triple α Capture
- 5 Conclusions

Motivations

ullet The nucleosynthesis of $^{12}{
m C}$ and $^{16}{
m O}$ in the universe stands as a fundamental issue within nuclear astrophysics

$$\alpha + \alpha + \alpha \Rightarrow {}^{12}C + \gamma$$
 ${}^{12}C + \alpha \Rightarrow {}^{16}O + \gamma$

▶ The description and the measurement of these alpha process cross-sections is a challenge

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q G

Motivations

• The nucleosynthesis of ¹²C and ¹⁶O in the universe stands as a fundamental issue within nuclear astrophysics

$$\alpha + \alpha + \alpha \Rightarrow {}^{12}C + \gamma$$

$${}^{12}C + \alpha \Rightarrow {}^{16}O + \gamma$$

- ▶ The description and the measurement of these alpha process cross-sections is a challenge
- Experimental evidence for the α cluster structure of some nuclei is well documented [M.Freer et al., Reviews of Modern Physics (2018)]
 - These α -cluster nuclei show a separation of energy scale \Rightarrow the energy required to break the system is much less than the α particles excitation energy

Motivations

• The nucleosynthesis of ¹²C and ¹⁶O in the universe stands as a fundamental issue within nuclear astrophysics

$$\alpha + \alpha + \alpha \Rightarrow {}^{12}C + \gamma$$

$${}^{12}C + \alpha \Rightarrow {}^{16}O + \gamma$$

- ▶ The description and the measurement of these alpha process cross-sections is a challenge
- Experimental evidence for the α cluster structure of some nuclei is well documented [M.Freer et al., Reviews of Modern Physics (2018)]
 - ► These α -cluster nuclei show a separation of energy scale \Rightarrow the energy required to break the system is much less than the α particles excitation energy
- Effective field theories (EFTs) provides a controlled framework to exploit the separation of scales

4日 → 4回 → 4 直 → 4 直 → 9 Q ®

Aim of the project

Our purpose is to describe some of these α -cluster nuclei and reactions in low energy range

- We use an EFT formulated with contact interactions among α particles
- ullet Description of $^{12}{
 m C}$ and $^{16}{
 m O}$ excited and bound states within lpha cluster EFT approach

$$\bullet$$
 $\alpha + \alpha + \alpha \rightarrow {}^{12}C + \gamma$

•
$$^{12}C + \alpha \rightarrow ^{16}O + \gamma$$

4/21

The Cluster EFT potential

The theory is constructed by analyzing the independent monomials allowed by the low-energy spatial symmetries of the underlying fundamental theory. Developing this procedure, we constructed a $\alpha\alpha$ contact potential up to N2LO

$$V_{\text{eff}}(\mathbf{r}) = \frac{4\alpha}{r} \operatorname{erf}\left(\frac{r}{r_{\alpha}\sqrt{2}}\right)$$

$$+ a_0^2 C_1 \delta_{a_0}^{(3)}(\mathbf{r}) + a^4 C_2 \nabla^2 \delta_a^{(3)}(\mathbf{r})$$

$$+ a^6 C_3 \nabla^4 \delta_a^{(3)}(\mathbf{r}) - C_5 \nabla^2 \delta_a^{(3)}(\mathbf{r}) \left(\frac{1}{2} \overleftrightarrow{\nabla}\right)^2$$

$$+ C_4 \left(\frac{I(I+1)}{a^4} + \frac{2}{a^2} \left(\frac{1}{2} \overleftrightarrow{\nabla}\right)^2\right) \delta_a^{(3)}(\mathbf{r})$$

where $\delta_a^{(3)}({\bf r})={\rm e}^{-({\bf r}/2a)^2}$, I indicates the angular quantum number, $r_\alpha=1.44$ fm is the α particle radius and $a_0=\frac{\hbar c}{\Lambda}$, $a=\frac{\hbar c}{\Lambda}$.

We neglect the N2LO non-local terms.

4□ > 4□ > 4□ > 4 = > 4 = > 4 = 900

5/21

The Cluster EFT potential

The theory is constructed by analyzing the independent monomials allowed by the low-energy spatial symmetries of the underlying fundamental theory. Developing this procedure, we constructed a $\alpha\alpha$ contact potential up to N2LO

$$V_{\text{eff}}(\mathbf{r}) = \frac{4\alpha}{r} \operatorname{erf}\left(\frac{r}{r_{\alpha}\sqrt{2}}\right) + a_{0}^{2} C_{1} \delta_{a0}^{(3)}(\mathbf{r}) + a^{4} C_{2} \nabla^{2} \delta_{a}^{(3)}(\mathbf{r}) + a^{6} C_{3} \nabla^{4} \delta_{a}^{(3)}(\mathbf{r}) - C_{5} \nabla^{2} \delta_{a}^{(3)}(\mathbf{r}) \left(\frac{1}{2} \nabla\right)^{2} + C_{4} \left(\frac{l(l+1)}{a^{4}} + \frac{2}{a^{2}} \left(\frac{1}{2} \nabla\right)^{2}\right) \delta_{a}^{(3)}(\mathbf{r})$$

where $\delta_a^{(3)}(\mathbf{r})=\mathrm{e}^{-(\mathbf{r}/2a)^2}$, I indicates the angular quantum number, $r_\alpha=1.44$ fm is the α particle radius and $a_0=\frac{\hbar c}{\Lambda_0}$, $a=\frac{\hbar c}{\Lambda}$.

We neglect the N2LO non-local terms.

4□ > 4□ > 4□ > 4 = > 4 = > 4 = 900

5/21

Fitting LECs

- We performed a fit on the S-wave and D-wave $\alpha\alpha$ scattering data of [AFZAL,et al. Rev. Mod. Phys. 41, 247-273 (1969)] up to 5 MeV
- Two-body scattering state is calculated by Kohn's variational principle
- We used the routine of minimization MIGRAD (Minuit routine of the Cern library)

Fit strategy

- First, for fixed cutoff of higher order terms, we fit the LO LEC from the position of ⁸Be resonance
- In the next step we fit the other LECs and the LO cutoff from the width of ⁸Be resonance and from the phase shift data

6/21

FIT Results

Using a total of 28 experimental data we obtain a $\chi^2/d.o.f \sim 1$ for each cutoff value analyzed

LECs	$\Lambda=120$	$\Lambda = 130$	$\Lambda = 140$	$\Lambda = 150$
C_1	61171.417	59459.301	60631.730	64520.692
C_2	-3.318	-13.884	-29.350	-101.4158
C ₃	-3.089	-4.218	-5.834	-9.619
C ₄	8.453	9.933	10.361	43.485
Λ_0	388.789	355.706	350.332	264.395
χ^2	29.275	19.587	20.838	22.180

- Non-natural values of Λ_0 and C_1 can be explained as an attempt of the theory to describe the resonance correctly
- \bullet Increasing the values of $\Lambda,\,\Lambda_0$ has a decreasing trend
- The LECs as Λ increases go to non-natural scales

7/21

Phase shift

- Very good agreement with the data at low energies
- We also reproduce energies up to \sim 15 MeV and the trend of the G-wave (I=4)

Order-by-order study of the phase shifts compared with experimental data

- The LECs are determined by fitting experimental phase shift data and resonance properties, as done for the full potential
- The bands reflect the variation of the theoretical predictions when the cutoff Λ is varied in the range 120–150 MeV

9/21

The resulting LO term of the effective potential is extremely repulsive at short distances (repulsion reaches 60 000 MeV) and rapidly decreases to zero at a distance of ~ 2 fm

⇒ Due to the strong repulsion of the LO term of the potential, the convergence is achieved with high values of the variational parameters

4日 > 4周 > 4 厘 > 4 厘 > 厘 の 9 9 9

10 / 21

Bound States with A = 3, 4 Bosons

Wave Function Decomposition

$$\Psi_{A} = \sum_{K,m} c_{K;m} |K,m\rangle$$

with basis states

$$\langle \rho, \Omega | \mathcal{K}, m \rangle = \underbrace{f_m(\rho)}_{\mathsf{Radial (Laguerre)}} \underbrace{\sum_{p} \mathcal{Y}^{\mathcal{K}}_{[\alpha]}(\Omega^{(p)})}_{\mathsf{Angular (HH)}}.$$

- Angular part (HH)
 - Depends on hyperangles φ_2 (A = 3), φ_2, φ_3 (A = 4)
 - lacktriangle Channels labeled by angular momenta [lpha]
 - ▶ Symmetry constraints \Rightarrow allowed l_i , parity
- Radial part (Laguerre)

$$f_m(\rho) \sim L_m^{(D-1)}(\gamma \rho) e^{-\gamma \rho/2}$$

- $ightharpoonup \gamma$ optimized variationally
- Coefficients c_{K;m}: from Rayleigh−Ritz⇒ generalized eigenvalue problem

¹²C excited and bound states

We include a three-body force of the form,

$$V_3(\rho) = (V_{03}\hat{P}_{L=0} + V_{23}\hat{P}_{L=2})e^{-(\rho^2/2a_3^2)}$$

where $\hat{P}_{L=0,2}$ are the L=0,2 waves projectors, tuning the V_{03},V_{23} and a_3 on the binding energy of the ground state, of the 2^+ excited state and of the Hoyle state, respectively

	$\Lambda = 120$	$\Lambda = 130$	$\Lambda = 140$	$\Lambda = 150$
V ₀₃ [MeV]	-19.44	-18.75	-18.58	-18.74
V ₂₃ [MeV]	-12.50	-11.68	-11.04	-10.69
a ₃ [fm]	3.283088	3.222431	3.058219	3.135534

М	$E_{G.S.}$ [MeV]	E_{2^+} [MeV]	E _{Hoyle} [MeV]
20	-7.1724	-2.7764	0.4068
30	-7.2664	-2.8664	0.3861
40	-7.2755	-2.8750	0.3843
50	-7.2764	-2.8762	0.3841

Stability of $^{12}\mathrm{C}$ state energies as a function of the number of Laguerre polynomials M

¹⁶O excited and bound states

The $^{16}\mathrm{O}$ nucleus described as a 4- α system has an experimental binding energy of -14.437 MeV

We include a four-body force of the form,

$$V_4(\rho) = (V_{04}\hat{P}_{L=0} + V_{24}\hat{P}_{L=2})e^{-(\rho^2/2s_4^2)}$$

 $\hat{P}_{L=0}$, $\hat{P}_{L=2}=L=0,2$ waves projectors, tuning V_{04} and a_4 on the binding energy of the ground state and of the first excited state.

	$\Lambda = 120$	$\Lambda = 130$	$\Lambda = 140$
V ₀₄ [MeV]	234.41	207.85	185.10
V ₂₄ [MeV]	236.80	193.42	160.00
a ₄ [fm]	2.542874	2.542874	2.542874

- The HH basis needed for convergence is quite large, since the LO two-body potential is strongly repulsive at short distances
- Stability checked by extrapolating results with increasing K

Convergence and Stability Checks

М	GS	0_{2}^{+}	М	2+	2+	
26	-14.298	-8.253	26	-7.227	-4.003	
28	-14.315	-8.266	28	-7.227	-4.003	
30	-14.322	-8.272	30	-7.228	-4.009	

 $^{16}\,\mathrm{O}$ ground and excited state energy as a function of M for $\Lambda=140$ MeV.

J^{π}	EXP.
0+	-14.44
0_{2}^{+}	-8.39
2 [‡]	-7.52
2_{2}^{+}	-4.592

	2+	2_{2}^{+}
$\Lambda = 120$	-7.557	-4.447
$\Lambda = 130$	-7.515	-4.479
$\Lambda = 140$	-7.491	-4.500

Extrapolated $^{16}{\rm O}$ 2^+ excited state energies in MeV for $\bar{K}=\infty$ and for different Λ values in MeV.

14 / 21

Elena Filandri (ECT *) lpha cluster approach

Triple α Capture

We want to study the process

$$\gamma + {}^{12}{\rm C}(L=2) \ o \ 3\alpha(L=0)$$

We adopt the adiabatic approximation

- ullet Solve the 3-lpha system by expanding in adiabatic channels depending on the hyperradius ho
- Off-diagonal couplings suppressed (or damped) beyond a certain ρ_0
- Advantages: simplifies boundary conditions; captures long-range Coulomb effects in an approximate way

Other works / comparisons

- Katsuma (2024): Faddeev-HHR + R-matrix expansion; finds the derived triple- α rates are in accord with standard evaluations for $0.08 \le T \le 3$, but suppressed by 10^{-4} at T=0.05 [Katsuma, arXiv:2411.03600 (2025)]
- Nguyen, Nunes et al. (2011–2013): full three-body model with hyperspherical harmonics + R-matrix propagation; they compute triple- rates, finding agreement with NACRE at higher T, but strong enhancement at low $T\lesssim 0.07$ [Nguyen et al., Phys. Rev. Lett. 106:042502 (2011); Phys. Rev. C 87:054605 (2013)]

Elena Filandri (ECT*) α cluster approach 3 October, 2025 15 / 21

Adiabatic approximation

 $3\alpha(L=0)$ wave function calculated using the adiabatic method

$$\Psi_{3\alpha}^{LM} = \sum_{\nu=1}^{N_A} \frac{u_{\nu}(\rho)}{\rho^{5/2}} \Phi_{\nu}^{LM}(\rho, \Omega)$$

 $\Psi_{3\alpha}^{LM} = \sum_{\nu=1}^{N_A} \frac{u_{\nu}(\rho)}{h^{\nu}} \Phi_{\nu}^{LM}(\rho, \Omega)$ $\Phi_{\nu}^{LM}(\rho, \Omega)$ =adiabatic functions calculated using an HH basis up to $K = K_M$

$$-\frac{\hbar^2}{m}\frac{d^2u_{\nu}}{d\rho^2} + U_{\nu}(\rho)u_{\nu} + \sum_{\nu'} \left[B_{\nu\nu'}(\rho) u'_{\nu'} + C_{\nu\nu'}(\rho) u_{\nu'} \right] = E u_{\nu}$$

For $\nu \neq \nu'$ $B_{\nu\nu'}$, $C_{\nu\nu'}$ multiplied by $\exp[-(\rho/\rho_0)^4]$, with $\rho_0 = 200$ fm

Internal solution

$$(0 < \rho < 200 \text{ fm})$$

- Boundary: $u_{\nu}(0) = 0$
- Full coupled equations
- Numerical integration (Numerov)

Matching solution

$$(
ho\sim 200~{
m fm})$$

- Couplings suppressed $(B, C \rightarrow 0)$
- Two analytic basis functions:

$$F_{
u}^{R} \sim \sin(z - \eta_{
u} \ln 2z),$$
 $G_{
u}^{R} \sim \cos(z - \eta_{
u} \ln 2z)$

 Construct regular/irregular solutions

 α cluster approach

Asymptotic solution $(\rho > 400 \text{ fm})$

- Effective potential: $U_{\nu} + C_{\nu\nu} \sim \frac{A_{\nu}}{c} + \frac{B_{\nu}}{3/2} + \frac{C_{\nu}}{c^2}$
- note $B_{\nu\nu}=0$ Boundary condition:
- $u_{\nu}^{(\nu_0)} = \delta_{\nu_0\nu} F_{\nu} + R_{\nu_0\nu} G_{\nu}$ Physical states:
- $w_{\nu}^{\nu_0} \sim \delta_{\nu_0\nu} F_{\nu} + T_{\nu_0\nu} (G_{\nu} + iF_{\nu})$

Quantities of interest

Disintegration cross section

$$d\sigma_{\gamma} \propto |\langle \psi_{^{12}{
m C}(L=2)}||B extsf{E}_{2}|\Psi_{3lpha(L=0)}
angle|^{2}$$

$$\gamma+^{12}\mathrm{C}(L=2) o 3\alpha(L=0)$$
 process, only E2 contribution \Rightarrow $BE_2=\sum_{i=1}^N r_i^2 Y_{2m}(\hat{r}_i)$

rate
$$3\alpha(L=0) \rightarrow \gamma + ^{12} C(L=2)$$

$$R(E) = 3! \, \mathcal{N}_A^2 G_N rac{8\pi}{(\mu_2 \mu_3)^{3/2}} rac{E_\gamma^2}{E^2} \sigma_{
m dis}$$

- $G_N = 10$ statistical factor
- $\mu_2 = m/2$ and $\mu_3 = 2m/3$ reduced masses
- $E_{\gamma} = E + \Delta B$, $\Delta B \approx 2.85$ MeV
- \mathcal{N}_{Δ} Avogadro number

Energy averaged rate

$$\overline{R}(T) = \frac{1}{2} \frac{1}{(k_B T)^3} \int_0^\infty dE \ E^2 R(E) \, e^{-E/k_B T}$$

• k_B Boltzmann constant

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

17 / 21

Cross-section (Premiminary)

18 / 21

Average rate (Premiminary)

3 October, 2025

Stability of the results

- Good stability in function of the number of the adiabatic functions
- Some problem in K
 - Higher K values
 - Other problems...

20 / 21

Elena Filandri (ECT *) lpha cluster approach

Conclusions

- We studied bound and excited states of 3α and 4α systems using short-range EFT-inspired potentials
 - ▶ LECs of the α - α potential fitted on phase shifts, resonance position and width; 3α LECs tuned to reproduce ground and first excited states of 12 C; 4α force ensures correct energies for the 16 O
- Preliminary adiabatic approximation results for 3α are consistent with some literature trends
- Further improvements are needed for accuracy and comparison with experimental data (e.g., Nacre)

This work lays the foundation to apply near zero-energy EFT to study $\alpha+{}^8\mathrm{Be}$ and $\alpha+{}^{12}\mathrm{C}$ radiative captures, key for stellar evolution

21 / 21