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Introduction to the physics problem
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Our aim is to apply a variational method, tailored to a Quantum Annealer, for solving the 
homogeneous Bethe-Salpeter equation (hBSE) in Minkowski momentum-space
[E.E Salpeter and H.A. Bethe, Phys. Rev. 84, 1232 (195)]

We consider the hBSE describing a bound system composed by two massive scalars 
interacting through the exchange of a massive boson. 

The hBSE in this case can be written as a Non Symmetric Generalized Eigenvalue Problem 
(GEVP) adopting a standard discretization method*

In relativistic quantum-field-theory, this equation has the same role in the bound state 
description that the Schrödinger equation has in non relativistic quantum mechanics

, with  and ϕb(k, p) = G(12)
0 (k, p)∫

d4k′￼

(2π)4
i𝒦(k, k′￼, p)ϕb(k′￼, p) p = p1 + p2 k =

p1 − p2

2

*T.Frederico, G.Salmè, and M.Viviani, Phys. Rev. D 89, 016010 (2014)



hBSE as a Generalized Eigenvalue Problem (GEVP)

3

[T.Frederico, G.Salmè and M.Viviani, Phys. Rev. D 89, 016010 (2014)]

A vi = λi B vi

• The eigenvalues are , where  ,with  the coupling constant of the 

interaction.

• We are interested only in the in the eigenpair corresponding to the largest, real and 

positive eigenvalue , since  

•  is the minimal coupling constant that allows the existence of a bound system with 
a given mass 

λi =
1
αi

αi =
g2

i

32π2
gi

λn λn =
1
αn

αn
M = 2m − B

We used  matrices obtained by the discretization of the hBSE with binding energy 

 and with an exchanged boson of mass 

(n × n)
B
m

= 1.0
μ
m

= 0.15



Quantum Annealing
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We used both Quantum Annealing (QA) and Simulated Annealing (SA)

Quantum Annealing:    Adiabatic transformation from tunneling Hamiltonian to problem Hamiltonian.

The qubits are initially in the ground state of the tunneling Hamiltonian. After the annealing, the qubits 
collapse into the ground state of the Ising Hamiltonian .Ĥp

 Quantum Uncostrained Binary Optimization (QUBO)x = arg min
v∈CN

vTQv :
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Advantage 4.1

Thanks to the D-Wave-Cineca agreement, as part of an international project approved by Q@TN(INFN-
UNITN-FBK-CNR), we used the QA Advantage 4.1 provided by D-Wave Systems

The transverse-Ising Hamiltonian that represents the problem to minimize is encoded into the target 
topology (PEGASUS) through an embedding procedure, with a heuristic algorithm provided by the D-
Wave software

To properly translate the problem on the topology of the hardware, the embedding needs to represent 
the logical qubits of the original problem with a larger number of physical qubits

With the Simulated Annealing (SA), the original problem can be directly solved without the an 
embedding procedure



Formulate a QUBO problem
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Goal: Write the GEVP as a problem suitable by the QA

First step: write the non symmetric GEVP as a variational problem*





The objective function (OF) is minimized by all the eigenvectors :


 


 We want  


Second step:  decompose the  matrix to transform the GEVP into a non symmetric 
eigenvalue problem with the standard LDL decomposition


 ,   

 

 We have to exploit the non singularity of   

f(A, B, v, λ̃) = vT[A − λ̃B]T[A − λ̃B]v ≥ 0
v

f(A, B, v, λ̃) = 0 ⇒ λR(v) = vT ABT + BT A
2

v

λ(v) = λR(v) ± iλI(v) ⇒ λI(v) = 0
B

CLTvi = λiLTvi wi = LTvi

f(C, w, λ̃) = wT[C − λ̃I]T[C − λ̃I]w = wTS(λ̃)w ≥ 0
B

*S. Alliney, F. Laudiero and M. Savoia, Applied mathematical modelling 16, 148 (1992)



Formulate a QUBO problem
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The QA is designed to deal with transverse-Ising model and QUBO problems in an hypercube 
. After a single annealing cycle the QA returns:Cn,b = [0,1]n*b

x = arg min
x∈Cn,b

xTQx

We need to approximate our quadratic form into a QUBO one, rewriting the matrices elements 
in a binary basis

f(C, w, λ̃) = wTS(λ̃)w ≃ xTPS(λ̃)PTx = xTQx

 w ≃ PTx ⇒ wα = − qb,α +
b−1

∑
i=1

qi,α

2i

 w = (w1, w2, …, wn)T ∈ [−1,1[n ⇒ x = (q1,1, …, qb,1, …, q1,n, …, qb,n)T ∈ Cn,b

PT = diag(pT, …, pT) p = (−1,
1
2

,
1
2

, …,
1

2b−1
)T



Gershgorin Theorem
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We must set  if we want to obtain  from a QA cycleλ̃ ≃ λn wn

We can guide the “guess phase” by using the Gershgorin circle theorem*:

𝒞i : |y − cii | = ≤ ∑
j≠i

|cij | = RG(cii)  elements of cij C

If a circle  is disconnected from the others then it contains one ad only one real eigenvalue𝒞j

If  is disconnected from the others, we can set  and we select 
only the solutions 

𝒞N λ̃ = c11 > c22 > c33…
∈ 𝒞N

* R. S. Varga, “Gershgorin and his circles”, Vol. 36 (Springer Science & Business Media, 2010)

f(C, w, λ̃) = wT[C − λ̃I]T[C − λ̃I]w = wTS(λ̃)w ≥ 0



Algorithm I: Guess Phase
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After  annealing cycles, the QA or the SA returns  binary vectors α = 1,…, NGP
A NGP

A {xα}

We analyze the set {wα, f(C, w, λ̃ = c11), λR(wα), λI(wα)}

We eliminate the solutions outside the disc 𝒞n

Among the surviving solutions, we take the one that satisfies:

f GP
best = min

wα

f(A, wα, λ̃ = λR(wα))

f(C, w, λ̃) = wTS(λ̃)w ≃ xTPS(λ̃)PTx = xTQx

At the end of the Guess Phase the best eigenpair  is passed to the 
Gradient-Descent phase in order to improve the precision on that solution

(wαGP
, λR(wαGP

))
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• Single run on the SA ( ) for a 32x32 matrix NGP

A = 2000

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012



Algorithm II:  gradient-descent
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At the end of the GP of the algorithm we find a solution w(z=0) = wαGP

Gradient-descent (GD): iterative algorithm that founds a new solution w(z)

New OF: ̂f(C, δ(z), λ̃) = δ(z)T𝒬(z, λ̃)δ(z) 𝒬(z, λ̃)ij =
1
2

S(λ̃)ij + δij[w(z−1)TS(λ̃)]i

f(C, w(z), λ̃) = f(C, w(z−1), λ̃) + w(z−1)TS(λ̃)δ(z) + δ(z)T S(λ̃)
2

δ(z)

w(z) = w(z−1) +
1
2z

δ(z)

 The OF can be expanded around :w(z−1)



Algorithm II:  gradient-descent
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At each zoom step  ( ) an inner loop is opened  z z = 1,…, zmax iz = 1,2,…

The QA or the SA returns en ensemble of  qubits states αi = 1,…, NGD
A {xαi

}

Among the ensemble we select the one with the minimal energy:
̂fDP
best;i(z) = min

δαi(z)
̂f(C, wz

αi
, λ̃ = λbest)

If   we pass the next zoom step . λR(wz
best;i) ≥ λbest z + 1 iz

max = iz

 and λbest = λ(w(z−1)) wbest = w(z−1)

Total annealing time: T ∝ NGD
A

zmax

∑
z=1

iz
max

: iterations needed to find the best solution for each iz
max z
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• 500 independent samples on the SA ( ,  ) for a 32x32 matrix 

• Trade-off between  and , already found in the symmetric case *

NGP
A = 200 NGD

A = 20
b zmax

* B. Krakoff, S. M. Mniszewski and C. F. A. Negre, arXiv:2104.11  ( 2021)

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012
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F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012

• 


• Euclidean distance and magnitude of the imaginary part slightly increase with 

zmax = 9
nM × b
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•   matrices with .  on the SA and  on the QA


• Actual 0 of the OF Plateau at  

4 × 4 b = 3 Nrun = 1000 Nrun = 10
≃ 10−16 ⇒ 10−8

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012



16

•  matrices with .  on the SA and  on the QA

• Lower SA’s performance in managing large matrices
32 × 32 b = 2 Nrun = 1000 Nrun = 10

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012
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• Total annealing time  and total number of physical qubits , averaged on 


•  is slightly increasing when the matrix dimension  increase


• Quadratic growth of  with the total dimension 

T Nqubits Nrun

T nM × b
Nqubits nM × b

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012
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Conclusions and perspectives

• A hybrid algorithm, suitable for a quantum annealer, was implemented to evaluate the 
largest real eigenvalue and corresponding eigenvector of a GEVP for the discretization 
of the hBSE 

• Numerical results obtained by running our two-phase algorithm both on Advantage 4.1 
and a SA


• The results obtained by the SA established a practical set of input parameters 
( )


• We successfully approached the target eigenpair by running the code on the D-Wave QA, 
obtaining very encouraging results, up to a matrix with dimension  and 


• The next challenge is to improve the algorithm in order to address the GEVP without 
exploiting the non singularity of the symmetric matrix 

b, NGP
A , NGD

A

n = 32 b = 2

B


