

# **Application of covariance matrix in TMD effects**



### Yiyu Zhou University of Turin

in collaboration with: P. Barry, E. Boglione, E. Nocera and A. Signori





#### Collinear structures

Most well-known are the collinear parton distribution functions (PDFs)



#### Datasets for studying pion structure

- Less data available than in the proton case
- Still valuable to study



Leading Neutron (LN)

Barry: <u>thesis</u>

#### Processes to study pion structure

• Drell-Yan (DY) and leading neutron(LN)



**Wikipedia** 



#### **Collinear pion PDFs**

Collinear pion PDFs are analyzed for valence, sea quarks and gluon



Barry, Ji, Sato & Melnitchouk: 2108.05822

#### Structures in the transverse direction

- TMD (transverse momentum dependent) distributions
- GPDs (generalized parton distributions)

#### Wigner Distributions



#### **TMD Handbook**

A modern introduction to the physics of Transverse Momentum Dependent distributions



Matthias Burkardt Martha Constantinou William Detmold Markus Ebert Michael Engelhardt Sean Fleming Leonard Gamberg Xiangdong Ji Zhong-Bo Kang Christopher Lee Keh-Fei Liu Simonetta Liuti Thomas Mehen ' Andreas Metz John Negele Daniel Pitonvak Alexei Prokudin Jian-Wei Qiu Abha Raian Marc Schlegel Phiala Shanahan Peter Schweitzer Iain W. Stewart \* Andrey Tarasov Raju Venugopalan Ivan Vitev Feng Yuan Yong Zhao

Renaud Boussarie

\* - Editors

#### 3D structure in momentum space

TMD (transverse momentum dependent) distributions:

- longitudinal momentum fraction
- transverse momentum  $k_T$  of quarks in the hadron



#### 3D structure in momentum space

TMD (transverse momentum dependent) distributions:

- longitudinal momentum fraction
- transverse momentum  $k_T$  of quarks in the hadron
- $b_T$  is conjugate to the intrinsic transverse momentum  $k_T$
- one can learn about coordinate space correlation of quarks



$$\widetilde{f}_{q/\mathcal{N}}\left(x,b_{T}
ight)=\intrac{\mathrm{d}b^{-}}{4\pi}e^{-ixP^{+}b^{-}}\operatorname{Tr}\!\left(\left\langle \mathcal{N}\middle|\overline{\psi}_{q}\left(b
ight)\!\gamma^{+}\mathcal{W}\left(b,0
ight)\!\psi_{q}\left(0
ight)\middle|\mathcal{N}
ight
angle
ight)$$

## Factorization of low- $q_T$ Drell-Yan

The Drell-Yan  $q_{\scriptscriptstyle T}$ -dependent cross section can be factorized in the low  $q_{\scriptscriptstyle T}$  region into:







$$rac{\mathrm{d}^3\sigma}{\mathrm{d} au\,\mathrm{d}y\,\mathrm{d}q_T^2} = rac{4\pi^2lpha^2}{9 au s^2} \sum_q H_{q\overline{q}}^{\mathrm{DY}}\left(Q^2,\mu
ight) \int \mathrm{d}^2oldsymbol{b}_T\,e^{ioldsymbol{b}_T\cdotoldsymbol{q}_T} \widetilde{f}_{q/\pi}\left(x_\pi,b_T,\mu,Q^2
ight) \widetilde{f}_{q/A}\left(x_A,b_T,\mu,Q^2
ight)$$

#### TMD PDFs with the $b_*$ prescription

 $b_*$  prescription is applied to smoothly join low and high  $b_T$  regions

$$ullet b_* \equiv b_T/\sqrt{1+b_T^2/b_{
m max}^2}$$

- $g_{a/N}$ : intrinsic non-perturbative structure of the TMD
- $g_{\kappa}$ : universal non-perturbative Collins-Soper kernel
- $S_{\text{pert}}$ : perturbative evolution of the TMD

$$egin{align*} \widetilde{f}_{q/\mathcal{N}}\left(x,b_{T},\mu=Q,Q^{2}
ight) = \left(C\otimes f
ight)_{q/\mathcal{N}}\left(x,b_{*}
ight) \ & imes \expigg(-g_{q/\mathcal{N}}\left(x,b_{T}
ight) - g_{K}\left(b_{T}
ight)\lnigg(rac{Q}{Q_{0}}
ight) - S_{ ext{pert.}}\left(b_{*},Q_{0},Q,\mu=Q
ight)igg) \end{aligned}$$



#### **Nuclear TMD correction: previous approach**

We model the nuclear TMD PDFs as:

$$\widetilde{f}_{q/A}\left(x,b_{T},\mu,\zeta
ight)=rac{Z}{A}\widetilde{f}_{q/p/A}\left(x,b_{T},\mu,\zeta
ight)+rac{A-Z}{A}\widetilde{f}_{q/n/A}\left(x,b_{T},\mu,\zeta
ight)$$

And further modify the  $g_{q/N/A}$  as [Alrashed et al: 2107.12401]:

$$g_{q/\mathcal{N}/A} = g_{q/\mathcal{N}} \left( 1 + a_N \left( A^{1/3} - 1 
ight) 
ight)$$

We have also assumed/used:

- Bound protons and neutrons follow TMD factorization
- Isospin symmetry so that  $u/p/A \leftrightarrow d/n/A$

#### **Nuclear TMD correction: new approach**

We still model the nuclear TMD PDFs as:

$$\widetilde{f}_{q/A}\left(x,b_{T},\mu,\zeta
ight)=rac{Z}{A}\widetilde{f}_{q/p/A}\left(x,b_{T},\mu,\zeta
ight)+rac{A-Z}{A}\widetilde{f}_{q/n/A}\left(x,b_{T},\mu,\zeta
ight)$$

We now introduce the nuclear covariance matrix:



All data points are connected, across different datasets!

#### **Data-theory agreement**

| dataset             | $N_{ m pt}$ | $\chi^2/N_{ m pt}$ |
|---------------------|-------------|--------------------|
| E288 (pPt)          | 30          | 1.5                |
| E288 (pPt)          | 39          | 1.1                |
| E288 (pPt)          | 62          | 0.9                |
| E605 ( <i>p</i> Cu) | 42          | 1.4                |
| E772 (pD)           | 51          | 2.6                |
| E866 (Fe/Be)        | 7           | 3.0                |
| E866 (W/Be)         | 7           | 2.9                |
| E615 (πW)           | 40          | 1.6                |
| E537 (πW)           | 27          | 1.3                |
| total               | 1370        | 0.90               |



#### **Data-theory agreement**

| dataset             | $N_{ m pt}$ | $\chi^2/N_{ m pt}$ |
|---------------------|-------------|--------------------|
| E288 (pPt)          | 30          | 1.5                |
| E288 (pPt)          | 39          | 1.1                |
| E288 (pPt)          | 62          | 0.9                |
| E605 ( <i>p</i> Cu) | 42          | 1.4                |
| E772 (pD)           | 51          | 2.6                |
| E866 (Fe/Be)        | 7           | 3.0                |
| E866 (W/Be)         | 7           | 2.9                |
| E615 (πW)           | 40          | 1.6                |
| E537 (πW)           | 27          | 1.3                |
| total               | 305         | 1.6                |



Description is actually good, large  $\chi^2$  comes from penalty terms that connect data points across datasets

# Data-theory agreement: compare to baseline

| dataset             | $N_{ m pt}$ | $\chi^2/N_{ m pt}$ (baseline) | $\chi^2/N_{ m pt}$ |
|---------------------|-------------|-------------------------------|--------------------|
| E288 (pPt)          | 30          | 1.1                           | 1.5                |
| E288 (pPt)          | 39          | 1.0                           | 1.1                |
| E288 (pPt)          | 62          | 0.8                           | 0.9                |
| E605 ( <i>p</i> Cu) | 42          | 1.2                           | 1.4                |
| E772 (pD)           | 51          | 2.5                           | 2.6                |
| E866 (Fe/Be)        | 7           | 1.1                           | 3.0                |
| E866 (W/Be)         | 7           | 1.0                           | 2.9                |
| E615 (πW)           | 40          | 1.4                           | 1.6                |
| E537 (πW)           | 27          | 1.0                           | 1.3                |
| total               | 305         | 1.3                           | 1.6                |

# Average $b_T$ as a function of x

$$\widetilde{f}_{q/\mathcal{N}}\left(b_{T}|x;Q,Q^{2}
ight)\equivrac{\widetilde{f}_{q/\mathcal{N}}\left(b_{T},x;Q,Q^{2}
ight)}{\int\mathrm{d}^{2}oldsymbol{b}_{T}\,\widetilde{f}_{q/\mathcal{N}}\left(b_{T},x;Q,Q^{2}
ight)}$$

$$\langle b_T | x 
angle_{q/\mathcal{N}} = \int \mathrm{d}^2 m{b}_T b_T \tilde{f}_{q/\mathcal{N}}(b_T | x; Q, Q^2),$$

- Nominal charge radius from PDG are marked
- As  $x \to 1$ , transverse motion phase space becomes narrower, hence  $b_T$  increases
- As Q increases, more gluons are radiated and  $k_T$  becomes larger, hence  $b_T$  decreases



# Nuclear modified average $\boldsymbol{b}_T$

$$\widetilde{f}_{q/\mathcal{N}}\left(b_{T}|x;Q,Q^{2}
ight)\equivrac{\widetilde{f}_{q/\mathcal{N}}\left(b_{T},x;Q,Q^{2}
ight)}{\int\mathrm{d}^{2}oldsymbol{b}_{T}\,\widetilde{f}_{q/\mathcal{N}}\left(b_{T},x;Q,Q^{2}
ight)}$$

$$\langle b_T | x \rangle_{q/\mathcal{N}} = \int \mathrm{d}^2 \boldsymbol{b}_T b_T \tilde{f}_{q/\mathcal{N}}(b_T | x; Q, Q^2),$$

- Broadening of  $b_T$  (hence smaller  $b_T$ ) is observed in the baseline
- With nuclear covariance matrix, no suppression is observed and uncertainty is vanishing ( $a_N = 0$ )



#### Summary

- We have explored a new approach for quantifying nuclear correction in TMD PDFs
- Studying the TMD distributions in pion is as important as studying the proton
- In the future, lattice datasets can be included in the analysis
- Future tagged experiments at EIC, JLab 22 GeV and AMBER at CERN can provide flavor separation

#### Thank you for your attention!