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“AB-INITIO” NUCLEAR THEORY

Illustration by APS / Alan Stonebraker



NUCLEAR HAMILTONIAN

3

<latexit sha1_base64="vVOM0tZ4uZv8IW8dcczQGWqSLqA="></latexit>
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Vijk

Realistic nuclear Hamiltonians include two- and three-body potentials 

<latexit sha1_base64="3l4fuRAyLadL9vtKRYY7qirR4+Y=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKqMeCF48V7Ae0S8mm2TZtNlmSbKEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pGpVqyhpUCaXbITFMcMkallvB2olmJA4Fa4Xj+7nfmjBtuJJPdpqwICYDySNOiXVSc9LL+GjWK1e8qrcAXid+TiqQo94rf3X7iqYxk5YKYkzH9xIbZERbTgWblbqpYQmhYzJgHUcliZkJssW1M3zhlD6OlHYlLV6ovycyEhszjUPXGRM7NKveXPzP66Q2ugsyLpPUMkmXi6JUYKvw/HXc55pRK6aOEKq5uxXTIdGEWhdQyYXgr768TppXVf+mev14Xal5eRxFOINzuAQfbqEGD1CHBlAYwTO8whtS6AW9o49lawHlM6fwB+jzB+eYj00=</latexit>vij

<latexit sha1_base64="3wO2PPWSe5EVtR0e6C/EuK4t878=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDbbTbtmswm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTR7czvPHFtRKIecJJyP6YjJULBKFqp0x7k4jGaDqo1t+7OQVaJV5AaFGgOql/9YcKymCtkkhrT89wU/ZxqFEzyaaWfGZ5SFtER71mqaMyNn8/PnZIzqwxJmGhbCslc/T2R09iYSRzYzpji2Cx7M/E/r5dheOPnQqUZcsUWi8JMEkzI7HcyFJozlBNLKNPC3krYmGrK0CZUsSF4yy+vkvZF3buqX95f1hpuEUcZTuAUzsGDa2jAHTShBQwieIZXeHNS58V5dz4WrSWnmDmGP3A+fwCAD4+i</latexit>

Vijk



• Non relativistic many body theory aims at solving the many-body Schrödinger equation

• Nucleons are fermions, so the wave function must be anti-symmetric

THE QUANTUM MANY-BODY PROBLEM

4

<latexit sha1_base64="Ntt+RksZOYd6BMentjRe6LeIS0g=">AAACHnicdVDLSgMxFM3UV62vUZdugkWoUMpM8bURKiJ0WcE+oB2GTJppQzOZIclIy9AvceOvuHGhiOBK/8a0nYW2eiBwOOcebu7xIkalsqwvI7O0vLK6ll3PbWxube+Yu3sNGcYCkzoOWShaHpKEUU7qiipGWpEgKPAYaXqD64nfvCdC0pDfqVFEnAD1OPUpRkpLrnlahZ2apC4vDF272OmGSsLi0L06hpfwxuX/mK6Zt0rWFHCR2CnJgxQ11/zQaRwHhCvMkJRt24qUkyChKGZknOvEkkQID1CPtDXlKCDSSabnjeGRVrrQD4V+XMGp+jORoEDKUeDpyQCpvpz3JuJfXjtW/oWTUB7FinA8W+THDKoQTrqCXSoIVmykCcKC6r9C3EcCYaUbzekS7PmTF0mjXLLPSvbtSb5STuvIggNwCArABuegAqqgBuoAgwfwBF7Aq/FoPBtvxvtsNGOkmX3wC8bnN0rzn3I=</latexit>

H n(x1, . . . , xA) = En n(x1, . . . , xA)

<latexit sha1_base64="8iRmZnvKzI/ZW0qWN64jYc7i04E=">AAACS3icbZDNS8MwGMbT6XTOr6pHL8EhTJijHaJehIkXjxPcB2ylpFm6xaVpSVLZKPv/vHjx5j/hxYMiHsy2Hra5FwI/nud9SPJ4EaNSWda7kVlbz25s5rby2zu7e/vmwWFDhrHApI5DFoqWhyRhlJO6ooqRViQICjxGmt7gbuI3n4mQNOSPahQRJ0A9Tn2KkdKSa3qdmqQuLw5duwQ73VBJOHRpiiXNT3N8ewZv4DmEqzLze3Qh45oFq2xNB/4HO4UCSKfmmm86jeOAcIUZkrJtW5FyEiQUxYyM851YkgjhAeqRtkaOAiKdZNrFGJ5qpQv9UOjDFZyq84kEBVKOAk9vBkj15bI3EVd57Vj5105CeRQrwvHsIj9mUIVwUizsUkGwYiMNCAuq3wpxHwmEla4/r0uwl7/8HxqVsn1Zth8uCtVKWkcOHIMTUAQ2uAJVcA9qoA4weAEf4At8G6/Gp/Fj/M5WM0aaOQILk8n+ARV1rqo=</latexit>

 n(x1, . . . xi, . . . , xj , . . . , xA) = � n(x1, . . . xj , . . . , xi, . . . , xA)
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A guide to Feynman diagrams in the many-body problem

THE QUANTUM MANY-BODY PROBLEM



CURSE OF DIMENSIONALITY

<latexit sha1_base64="mRLSRRlJuhbPbiSPEgEwEI85eeA=">AAACI3icbVDLSsNAFJ34rPUVdelmsAgVSkmkqAhCxY3LCPYBTQiT6aQdOpmEmYm0hP6LG3/FjQuluHHhvzhts9DWAxcO55zLzD1BwqhUlvVlrKyurW9sFraK2zu7e/vmwWFTxqnApIFjFot2gCRhlJOGooqRdiIIigJGWsHgbuq3noiQNOaPapQQL0I9TkOKkdKSb167jqS+VR76dsXtxkpW4NC/PYM30JVp5HOI9bhOn/p8MeObJatqzQCXiZ2TEsjh+OZEb+M0IlxhhqTs2FaivAwJRTEj46KbSpIgPEA90tGUo4hIL5vdOIanWunCMBZ6uIIz9fdGhiIpR1GgkxFSfbnoTcX/vE6qwisvozxJFeF4/lCYMqhiOC0MdqkgWLGRJggLqv8KcR8JhJWutahLsBdPXibN86p9Ua091Ep1K6+jAI7BCSgDG1yCOrgHDmgADJ7BK3gHH8aL8WZMjM95dMXId47AHxjfP4NwobA=</latexit>

 0(x1, . . . , xA) =
X

n

cn�n(x1, . . . , xA)

<latexit sha1_base64="RLrvA7vSjPvvQgzCQffX77EytWM=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gOaWjbbSbt0swm7G6XE/g8vHhTx6n/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0PfVbD6g0j+WdGSfYjehA8pAzaqx0/+TXh7zn+orKgcBeueJW3RnIMvFyUoEc9V75y+/HLI1QGiao1h3PTUw3o8pwJnBS8lONCWUjOsCOpZJGqLvZ7OoJObFKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa86mZcJqlByeaLwlQQE5NpBKTPFTIjxpZQpri9lbAhVZQZG1TJhuAtvrxMmmdV76J6fnteqbl5HEU4gmM4BQ8uoQY3UIcGMFDwDK/w5jw6L8678zFvLTj5zCH8gfP5A1IWklo=</latexit>

|�0i
<latexit sha1_base64="9rn/EDl9VFtIS/x/eBvaOPcjgrc=">AAACAXicbVBNS8NAEN34WetX1IvgJVgETyWpRT0WvHisYD+gjWGznTRLN5uwuxFKjBf/ihcPinj1X3jz37htc9DWBwOP92aYmecnjEpl29/G0vLK6tp6aaO8ubW9s2vu7bdlnAoCLRKzWHR9LIFRDi1FFYNuIgBHPoOOP7qa+J17EJLG/FaNE3AjPOQ0oAQrLXnm4UO/GdK7LPHOci8LvVreF5gPGXhmxa7aU1iLxClIBRVoeuZXfxCTNAKuCMNS9hw7UW6GhaKEQV7upxISTEZ4CD1NOY5Autn0g9w60crACmKhiytrqv6eyHAk5TjydWeEVSjnvYn4n9dLVXDpZpQnqQJOZouClFkqtiZxWAMqgCg21gQTQfWtFgmxwETp0Mo6BGf+5UXSrlWd82r9pl5p2EUcJXSEjtEpctAFaqBr1EQtRNAjekav6M14Ml6Md+Nj1rpkFDMH6A+Mzx+9kJcI</latexit>

|�p3

h2
i

<latexit sha1_base64="UsK6DuWXYavgq2ar4eYqqAmJd5M=">AAACCXicbVC7TsMwFHV4lvIKMLJYVEhMVdJWwFiJhbFI9CE1JXJcp7HqOJbtIFUhKwu/wsIAQqz8ARt/g9tmgJYjXenonHt17z2BYFRpx/m2VlbX1jc2S1vl7Z3dvX374LCjklRi0sYJS2QvQIowyklbU81IT0iC4oCRbjC+mvrdeyIVTfitnggyiNGI05BipI3k2/DBa0X0LhN+HQq/kftZ5Ndg5NdzTyI+YsS3K07VmQEuE7cgFVCg5dtf3jDBaUy4xgwp1XcdoQcZkppiRvKylyoiEB6jEekbylFM1CCbfZLDU6MMYZhIU1zDmfp7IkOxUpM4MJ0x0pFa9Kbif14/1eHlIKNcpJpwPF8UpgzqBE5jgUMqCdZsYgjCkppbIY6QRFib8MomBHfx5WXSqVXd82rjplFpOkUcJXAMTsAZcMEFaIJr0AJtgMEjeAav4M16sl6sd+tj3rpiFTNH4A+szx+UY5mV</latexit>
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Image courtesy of Patrick Fasano
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Quantum states of physical interest have distinctive features and intrinsic structures

Credit: G. Carleo

Hilbert Space

Physical States

Mean-field

NEURAL-NETWORK QUANTUM STATES
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NEURAL-NETWORK QUANTUM STATES

<latexit sha1_base64="tibUHP4b5HsG/Q6j06Y+p+CyDPU=">AAACRnicbVDPS8MwGP06f835q+rRS3AInkY7RD2JIIMdJ7hNWEtJs3SGpWlNUmHU/XVePHvzT/DiQRGvZlsPuvnBBy/vve9L8sKUM6Ud59UqLS2vrK6V1ysbm1vbO/buXkclmSS0TRKeyNsQK8qZoG3NNKe3qaQ4DjnthsOrid59oFKxRNzoUUr9GA8EixjB2lCB7TeCDvLofcYekBdJTHKPYzHgFHktxYz2iJqmi4Mnp9oYLbrmHReoETiBXXVqzrTQInALUIWiWoH94vUTksVUaMKxUj3XSbWfY6kZMVsrXqZoiskQD2jPQIFjqvx8GsMYHRmmj6JEmhYaTdnfEzmOlRrFoXHGWN+peW1C/qf1Mh2d+zkTaaapILOLoowjnaBJpqjPJCWajwzARDLzVkTusAlTm+QrJgR3/suLoFOvuae1k+uT6mW9iKMMB3AIx+DCGVxCE1rQBgJP8AYf8Gk9W+/Wl/U9s5asYmYf/lQJfgD5n6+Z</latexit>

EV ⌘ h V |H| V i
h V | V i

> E0

<latexit sha1_base64="NxMWA77C5scpL2CwVTQNBcTEHOg="></latexit>

EV ' 1

N

X

X2| V (X)|2

hX|H| V i
hX| V i

<latexit sha1_base64="PLfQLqrrBxMj/9bYUmMXPT9YLeA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY8FLx4r2g9oQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHiXlepdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8IAI2T</latexit>x1

<latexit sha1_base64="px5yU4uOiFh/gUFAGz8QCF0szW4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuCOox4MVjRPOAZAmzk95kyOzsMjMrhpBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9y3L1rlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHCYSNlA==</latexit>x2

<latexit sha1_base64="FlxpXv6lcQXcx5M7UOntjdTnnnI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8eAF08S0TwgWcLsZDYZMju7zPSKIeQTvHhQxKtf5M2/cZLsQaMFDUVVN91dYSqFQc/7cgpLyyura8X10sbm1vZOeXevYZJMM15niUx0K6SGS6F4HQVK3ko1p3EoeTMcXk395gPXRiTqHkcpD2LaVyISjKKV7h67N91yxXO9Gchf4uekAjlq3fJnp5ewLOYKmaTGtH0vxWBMNQom+aTUyQxPKRvSPm9bqmjMTTCenTohR1bpkSjRthSSmfpzYkxjY0ZxaDtjigOz6E3F/7x2htFlMBYqzZArNl8UZZJgQqZ/k57QnKEcWUKZFvZWwgZUU4Y2nZINwV98+S9pnLj+uXt2e1qpunkcRTiAQzgGHy6gCtdQgzow6MMTvMCrI51n5815n7cWnHxmH37B+fgGNOCNsw==</latexit>xN

<latexit sha1_base64="ny4kD5hfDkmYR9/GFb8REFGuxpI=">AAAB7XicbVDLSsNAFL3xWeur6tLNYBFchUR8LQtuXFawD2hDmUwn7djJJMzcCCX0H9y4UMSt/+POv3HaZqGtBwYO59zD3HvCVAqDnvftrKyurW9slrbK2zu7e/uVg8OmSTLNeIMlMtHtkBouheINFCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilZqdvsJGtKrVD3Xm4EsE78gVShQ71W+bJBlMVfIJDWm43spBjnVKJjkk3I3MzylbEQHvGOpojE3QT7bdkJOrdInUaLtU0hm6u9ETmNjxnFoJ2OKQ7PoTcX/vE6G0U2QC5VmyBWbfxRlkmBCpqeTvtCcoRxbQpkWdlfChlRThragsi3BXzx5mTTPXf/Kvby/qNbcoo4SHMMJnIEP11CDO6hDAxg8wjO8wpuTOC/Ou/MxH11xiswR/IHz+QNGNY7i</latexit> ..
.

<latexit sha1_base64="IaDI4M2foQW/fmU1bblOST/eT9E=">AAAB/XicbVDLSsNAFL3xWesrPnZugkWom5IUX+Cm4MZlBfuAJoTJdNIOnUzCzESoofgrblwo4tb/cOffOGmz0NYDA4dz7uWeOUHCqFS2/W0sLa+srq2XNsqbW9s7u+beflvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wegm9zsPREga83s1TogXoQGnIcVIack3D92mpH672r12I6SGQZglk1PfrNg1ewprkTgFqUCBpm9+uf0YpxHhCjMkZc+xE+VlSCiKGZmU3VSSBOERGpCephxFRHrZNP3EOtFK3wpjoR9X1lT9vZGhSMpxFOjJPKKc93LxP6+XqvDKyyhPUkU4nh0KU2ap2MqrsPpUEKzYWBOEBdVZLTxEAmGlCyvrEpz5Ly+Sdr3mXNTO784qjXpRRwmO4Biq4MAlNOAWmtACDI/wDK/wZjwZL8a78TEbXTKKnQP4A+PzB8oHlMQ=</latexit>

 V (X;p)
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The above matrix has to be skew-symmetric:

Example:

<latexit sha1_base64="eWSLp72LdJDli5Z5ECIHc2cSfvY=">AAADAHicbVJNa9tAEF0p/UiVpHUS6KWXpSahEGwk2016KRh66dGFOglYxqzWI3vJaiV2RyVG6NK/0ksPDaXX/oze+m+6/qBSnQ4svJ15b/fN7EaZFAZ9/7fj7jx4+Ojx7hNvb//g6bPG4dGlSXPNYchTmerriBmQQsEQBUq4zjSwJJJwFd28W9avPoE2IlUfcZHBOGEzJWLBGdrU5NB5HiLcYpHFpRdGMBOqiBKGWtyWHqU+PaVhNheTIuiUFe7WcK+kYejRVp1WyTo1ameLuiq16rxK193i9urc+qbbWwut2RDUtDL/tma8oraqFqrDzqpe/rqZNJp+218FvQ+CDWiSTQwmjV/hNOV5Agq5ZMaMAj/DccE0Ci7BDjc3kDF+w2YwslCxBMy4WD1gSU9sZkrjVNulkK6ydUXBEmMWSWSZtr+52a4tk/+rjXKM34wLobIcQfH1RXEuKaZ0+RvoVGjgKBcWMK6F9Ur5nGnG0f4Zzw4h2G75PrjstIPz9usPvWbf34xjl7wgL8krEpAL0ifvyYAMCXdK54vzzblzP7tf3e/ujzXVdTaaY/JPuD//AHgr5U8=</latexit>

pf

2

664

0 �12 �13 �14

��12 0 �23 �24

��13 ��23 0 �34

��14 ��24 ��34 0

3

775 = �12�34 � �13�24 + �14�23

<latexit sha1_base64="fl++QlyMYMvFSaveEPdtaj4a4NM=">AAACFnicbVBJSwMxFM641rqNevQSLEILtsyI20UoePFYwS7QGYZMmmnTZjJDkpGWob/Ci3/FiwdFvIo3/43pImrrg8C3vMfL+/yYUaks69NYWFxaXlnNrGXXNza3ts2d3ZqMEoFJFUcsEg0fScIoJ1VFFSONWBAU+ozU/d7VyK/fESFpxG/VICZuiNqcBhQjpSXPLDpxh+b7Hj3qe90CvIQOUeiHF795V3Na8MycVbLGBeeBPQU5MK2KZ344rQgnIeEKMyRl07Zi5aZIKIoZGWadRJIY4R5qk6aGHIVEuun4rCE81EoLBpHQjys4Vn9PpCiUchD6ujNEqiNnvZH4n9dMVHDhppTHiSIcTxYFCYMqgqOMYIsKghUbaICwoPqvEHeQQFjpJLM6BHv25HlQOy7ZZ6XTm5Nc2ZrGkQH74ADkgQ3OQRlcgwqoAgzuwSN4Bi/Gg/FkvBpvk9YFYzqzB/6U8f4Fj46dEg==</latexit>

�(xi, xj) = ⌘(xi, xj)� ⌘(xj , xi)

PFAFFIAN-JASTROW ANSATZ
<latexit sha1_base64="7CgsFpZSkrQJoopyXgeMj7X5TSM="></latexit>

!PJ(X) = eJ(X) → pf





0 ω(x1, x2) · · · ω(x1, xN )
ω(x2, x1) 0 · · · ω(x2, xN )

...
...

. . .
...

ω(xN , x1) ω(xN , x2) · · · 0




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PFAFFIAN-JASTROW ANSATZ

<latexit sha1_base64="vvL60F3SUlNR10ob1ubXycJEhZQ="></latexit> ..
.

<latexit sha1_base64="dUIqsVqfTl9M2xzhouCvyXCU8Sc=">AAACB3icbVDLSsNAFL2pr1pfUZeCBIvgQkoivpYFNy4r2Ac0MUymk3boZBJmJkIN2bnxV9y4UMStv+DOv3HSdqGtB+ZyOOde5t4TJIxKZdvfRmlhcWl5pbxaWVvf2Nwyt3daMk4FJk0cs1h0AiQJo5w0FVWMdBJBUBQw0g6GV4XfvidC0pjfqlFCvAj1OQ0pRkpLvrnvBkhkboTUIAgzkec+PZZ3D7qqovpm1a7ZY1jzxJmSKkzR8M0vtxfjNCJcYYak7Dp2orwMCUUxI3nFTSVJEB6iPulqylFEpJeN78itQ630rDAW+nFljdXfExmKpBxFge4sFpazXiH+53VTFV56GeVJqgjHk4/ClFkqtopQrB4VBCs20gRhQfWuFh4ggbDS0VV0CM7syfOkdVJzzmtnN6fVuj2Nowx7cABH4MAF1OEaGtAEDI/wDK/wZjwZL8a78TFpLRnTmV34A+PzB8bWmdc=</latexit>

r̄i, s
z
i , t

z
i

<latexit sha1_base64="8uCN1qyM2AmWkRm3W35yI+2Ksyg=">AAACBHicbVDLSsNAFL2pr1pfUZfdDBbBhZSkSHVZcOOygn1AE8NkOmnHTh7MTIQaunDjr7hxoYhbP8Kdf+Ok7UJbDwz3cM693LnHTziTyrK+jcLK6tr6RnGztLW9s7tn7h+0ZZwKQlsk5rHo+lhSziLaUkxx2k0ExaHPaccfXeZ+554KyeLoRo0T6oZ4ELGAEay05Jllx8cic/wAiYl3d4rk7UNeVF48s2JVrSnQMrHnpAJzND3zy+nHJA1ppAjHUvZsK1FuhoVihNNJyUklTTAZ4QHtaRrhkEo3mx4xQcda6aMgFvpFCk3V3xMZDqUch77uDLEaykUvF//zeqkKLtyMRUmqaERmi4KUIxWjPBHUZ4ISxceaYCKY/isiQywwUTq3kg7BXjx5mbRrVbterV+fVRq1eRxFKMMRnIAN59CAK2hCCwg8wjO8wpvxZLwY78bHrLVgzGcO4Q+Mzx/AtJd9</latexit>
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Abstract

Recent work on the representation of functions
on sets has considered the use of summation in
a latent space to enforce permutation invariance.
In particular, it has been conjectured that the di-
mension of this latent space may remain fixed
as the cardinality of the sets under consideration
increases. However, we demonstrate that the ana-
lysis leading to this conjecture requires mappings
which are highly discontinuous and argue that this
is only of limited practical use. Motivated by this
observation, we prove that an implementation of
this model via continuous mappings (as provided
by e.g. neural networks or Gaussian processes)
actually imposes a constraint on the dimensional-
ity of the latent space. Practical universal function
representation for set inputs can only be achieved
with a latent dimension at least the size of the
maximum number of input elements.

1. Introduction

Machine learning models have had great success in taking
advantage of structure in their input spaces: recurrent neural
networks are popular models for sequential data (Sutskever
et al., 2014) and convolutional neural networks are the state-
of-the-art for many image-based problems (He et al., 2016).
Recently, however, models for unstructured inputs in the
form of sets have rapidly gained attention (Ravanbakhsh
et al., 2016; Zaheer et al., 2017; Qi et al., 2017a; Lee et al.,
2018; Murphy et al., 2018; Korshunova et al., 2018).

Importantly, a range of machine learning problems can nat-
urally be formulated in terms of sets; e.g. parsing a scene
composed of a set of objects (Eslami et al., 2016; Kosiorek
et al., 2018), making predictions from a set of points form-
ing a 3D point cloud (Qi et al., 2017a;b), or training a set
of agents in reinforcement learning (Sunehag et al., 2017).

*Equal contribution 1Department of Engineering Science, Uni-
versity of Oxford, Oxford, United Kingdom. Correspondence to:
<{ed, fabian, martin}@robots.ox.ac.uk>.

Proceedings of the 36 th
International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

+ ��

X � �M �NxM �N �

Input Output

x1
xM

Z
f(x1, …, xM)

�(x1)
�(xM)

Figure 1: Illustration of the model structure proposed in
several works (Zaheer et al., 2017; Qi et al., 2017a) for
representing permutation-invariant functions. The sum op-
eration enforces permutation invariance for the model as a
whole. � and ⇢ can be implemented by e.g. neural networks.

Furthermore, attention-based models perform a weighted
summation of a set of features (Vaswani et al., 2017; Lee
et al., 2018). Hence, understanding the mathematical prop-
erties of set-based models is valuable both in terms of set-
structured applications as well as better understanding the
capabilities and limitations of attention-based models.

Many popular machine learning models, including neural
networks and Gaussian processes, are fundamentally based
on vector inputs1 rather than set inputs. In order to adapt
these models for use with sets, we must enforce the property
of permutation invariance, i.e. the output of the model must
not change if the inputs are reordered. Multiple authors, in-
cluding Ravanbakhsh et al. (2016), Zaheer et al. (2017) and
Qi et al. (2017a), have considered enforcing this property
using a technique which we term sum-decomposition, illus-
trated in Figure 1. Mathematically speaking, we say that a
function f defined on sets of size M is sum-decomposable

via Z if there are functions � : R ! Z and ⇢ : Z ! R such
that2

f(X) = ⇢
�
⌃x2X�(x)

�
(1)

We refer to Z here as the latent space. Since summa-
tion is permutation-invariant, a sum-decomposition is also
permutation-invariant. Ravanbakhsh et al. (2016), Zaheer
et al. (2017) and Qi et al. (2017b) have also considered
the idea of enforcing permutation invariance using other
operations, e.g. max(·). In this paper we concentrate on a
detailed analysis of sum-decomposition, but some of the lim-
itations we discuss also apply when max(·) is used instead
of summation.

1Or inputs of higher rank, i.e. matrices and tensors.
2We use R here for brevity – see Definition 2.2 for the fully

general definition.
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The nodal structure is improved with neural back-flow transformations

4

Figure 1. Schematic illustration of the backflow transformation, which transforms single-particle coordinates ri 2 Rd (black
dots, top left) to quasi-particle coordinates �ri 2 Cd via the MPNN (black/white dots for real/imaginary part, top right).
The MPNN constructs an initial graph that consists of an initial feature vector (dark grey) and a hidden state (green). This
graph is then transformed via messages, defined in Eq. 7, to another graph consisting of the initial feature vectors and an
updated hidden state (indicated by di↵erent coloring). After the final iteration, the node states are linearly transformed to

the quasi-particle positions �ri = W · h(T )
i , which now contain information about all particles (D is the dimension of the last

graph’s nodes).

orbitals are a natural choice: �k(r) = exp [ik · r] with
k = 2⇡

L
n where n 2 Zd. To take into account spin, we use

the spin-orbitals �µ(r, s) = �kµ(r)�sµ,s, where s denotes
the spin of the particle at position r, and each spin-orbital
is characterized by the quantum numbers µ = (kµ, sµ).
This choice of orbitals allows us to fix the total momen-
tum of the system ktot =

P
N

i=1 ki. Furthermore, the
choice of orbitals allows us to factorize the determinant
into a product of determinants of up and down spin or-
bitals.

D. MP-NQS for the Electron Gas

To specialize the MP-NQS architecture to the HEG,
we only need to define the initial feature vectors. Since
the HEG is invariant under continuous translations and
spin inversion, we do not input single-particle informa-
tion (single-particle positions/spins) to the initial node
features. Instead, we use a learnable embedding vector
e 2 RD1 , that does not depend on the particle index i.
For the edge features, we use the translation invariant
particle-distances rij = ri � rj and their norm. To dis-
tinguish same- and opposite-spin pairs without breaking
the spin-inversion symmetry of the problem, we input
products of the form si · sj = ±1 to the edge features.

Overall, we get the following initial feature vectors:

x(0)
i

= e (15)

x(0)
ij

= [rij , krijk, si · sj ]. (16)

Notice that with this choice, the resulting backflow coor-
dinate yi preserves the spin quantum number si of the
particle i exactly.

To respect the PBCs of the simulation box, we apply
the method introduced in Ref. [21]. The components of
a vector r 2 Rd (where r can represent a single-particle
position vector ri or a distance vector rij) are mapped
to a Fourier basis r 7!

⇥
sin

�
2⇡
L
r
�
, cos

�
2⇡
L
r
�⇤

2 R2d and
the norm of the distance between two particles krijk is
replaced with a periodic surrogate krijk 7!

��sin
�
⇡

L
rij

���.
In sum, our Ansatz allows us to fix the total momen-

tum ktot, while being translation invariant and respecting
spin-inversion symmetry. Furthermore, the MP-NQS can
change the nodal surface with a number of variational pa-
rameters independent of the system size. The variational
Ansatz for the HEG uses around ⇠ 19000 variational pa-
rameters and can be trained within O(103) optimization
steps while reaching state-of-the-art accuracy. A detailed
comparison to other existing NQS approaches is given in
Appendix C.

G. Pescia, et al., Phys. Rev. B 110 (2024) 3, 035108
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Input: Hamiltonian inspired by a LO pionless-EFT expansion 

• NN potential fit to s-wave np scattering lengths 
and effective ranges
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• 3NF adjusted to reproduce the energy of 3H.

R. Schiavilla, AL, PRC 103, 054003 (2021)
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NUCLEI WITH A STRANGE PARTICLE
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Hypernuclei: bound state between an ordinary nucleus with one (or more) hyperons

Our work: consider single-Λ hypernuclei to begin with
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THE HYPERON PUZZLE
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THE HYPERON PUZZLE
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Table I: Numerical values for the two-body LECs and regulators adjusted to reproduce the scattering lengths and
e!ective ranges extracted from scattering experiments in the spin-singlet and spin-triplet channels. The np values

are taken from Ref. [48], and the p! ones from Ref. [49].

Channel IS CIS (MeV) ωIS (fm→1) aexp (fm) rexp (fm)

np 10 -31.0633 1.10117 -23.7148(43) 2.750(18)
01 -68.3747 1.30512 5.4112(15) 1.7436(19)

p!

1
20 -33.5417 1.54720 -1.80 2.80
1
21 -25.3115 1.41379 -1.60 3.30

the essential elements of nuclear binding while preserv-
ing formal consistency. Instead of taking ω to infinity,
we fix its value separately in the NN and N! channels to
reproduce the experimentally extracted e!ective ranges.
The regulators for the NNN and NN! three-body forces
are likewise tuned to experimental input, as discussed be-
low. This approach is analogous to improving the conver-
gence of pionless EFT by resumming perturbative sub-
leading corrections, as recently proposed in Refs. [56–58]
It can be systematically improved by including higher-
order terms, while simultaneously restoring the renor-
malization group invariance that is otherwise lost when
fixing the interaction range.

As in [46], we determine the LECs and regulator val-
ues of the NN potential by fitting to the neutron–proton
(np) scattering lengths and e!ective ranges in the 1

S0

and 3
S1 channels, corresponding to isospin states IS =

{(10), (01)}, respectively. For the experimental input,
we adopt the values reported in [48]. Similarly, the LECs
and regulators for the N! interaction are fixed to repro-
duce the scattering lengths and e!ective ranges inferred
from low-energy !p scattering cross sections measured
in [49], in both the 1

S0 and 3
S1 channels, which corre-

spond to isospin states IS = {( 120), (
1
21)}. The numeri-

cal fits are carried out using the variable phase approach
[59]. The results are summarized in Table I, which lists
the fitted LECs, regulators, and corresponding scattering
parameters. The LECs and regulators obtained for the
np channel are in close agreement with those reported
in [46], with only minor deviations arising from slight
di!erences in the scattering lengths and e!ective ranges
used in the fits.

In principle, the coupling constant Dω and the regu-
lator ω defining the NNN potential could be determined

Table II: Experimental ground-state energies used to
constrain the three-body NNN interaction taken

from [60]. The uncertainties were inflated to 2.5% of
their respective values.

System BE (MeV) ε (MeV)
3H 8.48 0.21
3He 7.80 0.20
4He 28.30 0.71
16O 127.6 3.2

by fitting the ground-state energies of 3H and 4He. How-
ever, owing to the strong correlation between these ob-
servables, many di!erent combinations of LECs and reg-
ulators can reproduce them. This behavior is expected
from renormalization group invariance and from the ab-
sence of a four-body force at leading order in the theory.
Nevertheless, excessively large cuto!s would lead to in-
stabilities in larger systems, we include the ground-state
energy of 16O as an additional fitting constraint. This
choice remains consistent with the EFT framework, pro-
vided that the fixed range does not exceed the inverse
of the theory’s breakdown scale. The experimental val-
ues and their uncertainties used in the fit are reported
in Table II. To improve the stability of the fitting algo-
rithm we have artificially inflated the uncertainties of the
ground-state energies to 2.5% of their respective values,
well below the theoretical uncertainty associated with a
leading-order pionless-EFT interaction [5, 61].

Similarly, the low-energy constants and regulators of
the NN! potential can be adjusted to reproduce the !
separation energies, defined as the energy di!erence be-
tween the hypernucleus and its parent nucleus:

B! = EA→1Z → EA
!Z ,

for 3
!H, 4

!HS=0, 4
!HS=1, and 5

!He. As in the nuclear case,
we also include the separation energy of 16

! O in the fit.
The experimental values and their uncertainties are listed
in Table III.

The fit for both the NNN and NN! potentials is
e"ciently performed by leveraging Gaussian Processes
(GP) [63] to interpolate ground-state energies as continu-
ous functions of the LECs and regulators. This approach
is particularly advantageous when fitting the NN! force,

Table III: Experimental ! separation energies used to
constrain the three-body NN! interaction taken from

the Hypernuclear Database [62].

System B! (MeV) ε (MeV) IS Dependence
3
!H 0.164 0.043

(
0
1
2

)

4
!HS=0 2.169 0.042

(
0
1
2

)
,
(
1
1
2

)

4
!HS=1 1.081 0.046

(
0
1
2

)
,
(
1
1
2

)
,
(
0
3
2

)

5
!He 3.102 0.030

(
0
1
2

)
,
(
1
1
2

)
,
(
0
3
2

)

16
! O 13.00 0.089

(
0
1
2

)
,
(
1
1
2

)
,
(
0
3
2

)
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Table I: Numerical values for the two-body LECs and regulators adjusted to reproduce the scattering lengths and
e!ective ranges extracted from scattering experiments in the spin-singlet and spin-triplet channels. The np values

are taken from Ref. [48], and the p! ones from Ref. [49].

Channel IS CIS (MeV) ωIS (fm→1) aexp (fm) rexp (fm)

np 10 -31.0633 1.10117 -23.7148(43) 2.750(18)
01 -68.3747 1.30512 5.4112(15) 1.7436(19)

p!

1
20 -33.5417 1.54720 -1.80 2.80
1
21 -25.3115 1.41379 -1.60 3.30

the essential elements of nuclear binding while preserv-
ing formal consistency. Instead of taking ω to infinity,
we fix its value separately in the NN and N! channels to
reproduce the experimentally extracted e!ective ranges.
The regulators for the NNN and NN! three-body forces
are likewise tuned to experimental input, as discussed be-
low. This approach is analogous to improving the conver-
gence of pionless EFT by resumming perturbative sub-
leading corrections, as recently proposed in Refs. [56–58]
It can be systematically improved by including higher-
order terms, while simultaneously restoring the renor-
malization group invariance that is otherwise lost when
fixing the interaction range.

As in [46], we determine the LECs and regulator val-
ues of the NN potential by fitting to the neutron–proton
(np) scattering lengths and e!ective ranges in the 1

S0

and 3
S1 channels, corresponding to isospin states IS =

{(10), (01)}, respectively. For the experimental input,
we adopt the values reported in [48]. Similarly, the LECs
and regulators for the N! interaction are fixed to repro-
duce the scattering lengths and e!ective ranges inferred
from low-energy !p scattering cross sections measured
in [49], in both the 1

S0 and 3
S1 channels, which corre-

spond to isospin states IS = {( 120), (
1
21)}. The numeri-

cal fits are carried out using the variable phase approach
[59]. The results are summarized in Table I, which lists
the fitted LECs, regulators, and corresponding scattering
parameters. The LECs and regulators obtained for the
np channel are in close agreement with those reported
in [46], with only minor deviations arising from slight
di!erences in the scattering lengths and e!ective ranges
used in the fits.

In principle, the coupling constant Dω and the regu-
lator ω defining the NNN potential could be determined

Table II: Experimental ground-state energies used to
constrain the three-body NNN interaction taken

from [60]. The uncertainties were inflated to 2.5% of
their respective values.

System BE (MeV) ε (MeV)
3H 8.48 0.21
3He 7.80 0.20
4He 28.30 0.71
16O 127.6 3.2

by fitting the ground-state energies of 3H and 4He. How-
ever, owing to the strong correlation between these ob-
servables, many di!erent combinations of LECs and reg-
ulators can reproduce them. This behavior is expected
from renormalization group invariance and from the ab-
sence of a four-body force at leading order in the theory.
Nevertheless, excessively large cuto!s would lead to in-
stabilities in larger systems, we include the ground-state
energy of 16O as an additional fitting constraint. This
choice remains consistent with the EFT framework, pro-
vided that the fixed range does not exceed the inverse
of the theory’s breakdown scale. The experimental val-
ues and their uncertainties used in the fit are reported
in Table II. To improve the stability of the fitting algo-
rithm we have artificially inflated the uncertainties of the
ground-state energies to 2.5% of their respective values,
well below the theoretical uncertainty associated with a
leading-order pionless-EFT interaction [5, 61].

Similarly, the low-energy constants and regulators of
the NN! potential can be adjusted to reproduce the !
separation energies, defined as the energy di!erence be-
tween the hypernucleus and its parent nucleus:

B! = EA→1Z → EA
!Z ,

for 3
!H, 4

!HS=0, 4
!HS=1, and 5

!He. As in the nuclear case,
we also include the separation energy of 16

! O in the fit.
The experimental values and their uncertainties are listed
in Table III.

The fit for both the NNN and NN! potentials is
e"ciently performed by leveraging Gaussian Processes
(GP) [63] to interpolate ground-state energies as continu-
ous functions of the LECs and regulators. This approach
is particularly advantageous when fitting the NN! force,

Table III: Experimental ! separation energies used to
constrain the three-body NN! interaction taken from

the Hypernuclear Database [62].

System B! (MeV) ε (MeV) IS Dependence
3
!H 0.164 0.043

(
0
1
2

)

4
!HS=0 2.169 0.042

(
0
1
2

)
,
(
1
1
2

)

4
!HS=1 1.081 0.046

(
0
1
2

)
,
(
1
1
2

)
,
(
0
3
2

)

5
!He 3.102 0.030

(
0
1
2

)
,
(
1
1
2

)
,
(
0
3
2

)

16
! O 13.00 0.089

(
0
1
2

)
,
(
1
1
2

)
,
(
0
3
2

)

Fit to hyper nuclear separation energies 
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Figure 4: Same as Figure 2 but for the hypernuclear separation energies (in MeV).

architecture [72, 73] with logsumexp pooling:

UJ(XN ) = ωU



log




A→1∑

i ↑=j=1

exp
(
εU (xi,xj)

)








VJ(XN ) = ωV



log




A→1∑

i ↑=j=1

exp
(
εV (xi,xj)

)






 , (12)

where i runs over all the NN pairs. Both εU,V and ωU,V

are dense feed-forward neural networks, each comprising
two hidden layers with 32 nodes. The latent space—the
output dimension of εU,V and the input dimension of
ωU,V —is set to 16.

The antisymmetric part of the nucleonic wave func-
tion is given by the Pfa!an of a skew-symmetric matrix,
which has proven e"ective in capturing strong pairing
correlations in both ultra-cold Fermi gases [44] and low-
density nuclear matter [45]. For nuclei with an even num-

ber of nucleons, we define the skew-symmetric matrix as

!(XN ) =





0 ε(x1,x2) . . . ε(x1,xA→1)
ε(x2,x1) 0 . . . ε(x2,xA→1)

...
...

. . .
...

ε(xA→1,x1) ε(xA→1,x2) . . . 0




.

(13)
To ensure skew-symmetry, the pairing orbital is written
as

ε(xi,xj) = ϑ(xi,xj) → ϑ(xj ,xi), (14)

so that ε(xi,xj) = →ε(xj ,xi). In the above equation,
ϑ(xi,xj) is a complex-valued function, whose logarithm
is regularized as in Eq. (11)

ϑ(xi,xj) = exp

[
a tanh

(
uω(xi,xj)

a


+ iϖ vω(xi,xj))


.

(15)
The real-valued feed-forward neural networks uω and vω,
which encode the logarithmic amplitude and phase of ϑ,
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Figure 3: Joint distributions of the LECs (in MeV) and regulator (in fm→1) entering NN! potential.

body observables in the hypernuclear sector broaden the
convergence region of the fitted parameters into a con-
tinuous path in parameter space, which allows for very
large values of ω. As in the nuclear case, including 16

! O
in the fit is essential to constrain the range of the NN!
interaction. This observable breaks the remaining degen-
eracy and selects a relatively narrow region in parameter
space consistent with the experimental B! data.

III. HYPERNUCLEAR NEURAL NETWORK
QUANTUM STATE ANSATZ

We solve the nuclear quantum many-body problem
by extending the highly flexible Pfa!an-Jastrow ansatz,
originally introduced to model ultra-cold Fermi gases
in Ref. [44] and later generalized to nuclear systems in
Ref. [45], to include hyperons in addition to protons and
neutrons. To clarify the notation, we denote the full set
of coordinates as

X = (x1, . . . ,xA→1,x!), (9)

where each xi = (ri, si) comprises the spatial Cartesian
coordinates ri and the z-components of the spin–isospin
degrees of freedom, si = (szi , tzi), for the i-th particle.

As a convention, we take tz = 1 for protons, tz = →1 for
neutrons, and tz = 0 for the ! particle.

We first focus on the pure nucleonic sector and collec-
tively denote the coordinates of the nucleons by

XN = (x1, . . . ,xA→1).

The amplitude of the Pfa!an-Jastrow ansatz for the nu-
cleonic sector can be schematically written as

↑XN |”PJ↓ ↔ ”PJ(XN ) = e
J(XN ) ↗ Pf

[
#(XN )

]
, (10)

where the complex-valued, permutation-invariant Jas-
trow factor is defined as

J(XN ) = a tanh

(
UJ(XN )

a

)
+ i VJ(XN ) . (11)

Here, UJ(XN ) and VJ(XN ) are real-valued functions rep-
resenting the logarithmic amplitude and phase, respec-
tively. The parameter a acts as a cuto" that regularizes
the growth of UJ and helps mitigate potential runaway
instabilities. Following Ref. [71], we choose a = 8, which
allows a maximum relative magnitude variation of ap-
proximately 10→7. We enforce both UJ(XN ) and VJ(XN )
to be permutation invariant by employing the Deep Sets
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• Good agreement with experimental data, intermediate hypernuclei somewhat under-bound.
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Figure 7: Neutron (orange squares), proton (green
triangles), and ! hyperon (blue circles) single-particle
radial density distributions for 5

!He (upper panel), 7
!Li

(middle panel), and 16
! O (lower panel). The protons

densities of the corresponding parent nuclei are also
shown by the black solid line. For illustrative purposes,
the distributions are normalized to unity and multiplied

by a factor of r2, as discussed in the text.

this e!ect, we define the relative radius di!erence as

ωr =

√
→r2p↑A! ↓

√
→r2p↑A→1

√
→r2p↑A→1

, (22)

where
√

→r2p↑!A is the proton point radius of the hypernu-
cleus, and

√
→r2p↑A→1 is the corresponding radius for its

parent nucleus.
We observe a two-regime behavior of ωr as a function

of A, which is consistent with trends observed in the spa-
tial density distributions displayed in Figure 7, where the
proton density distribution of parent nuclei is given by a
thick solid line.

For light systems such as 3
!H, 4

!H, 4
!He, and 5

!He, our
NQS calculations yield ωr > 0, indicating that the proton
radius in the hypernucleus is larger than in the parent
nucleus. In these systems, the ! hyperon is weakly bound
and tends to form an extended halo around the core,
e!ectively “pulling” the nucleons outward from the center
of mass. For 5

!He, we obtain ωr ↔ 0.11, in line with the
pioneering theoretical calculations of Ref. [29] for 4

!H and
4
!He.

Starting from 7
!Li — for which we find ωr ↔ ↓0.13 —

the proton radius of the hypernucleus becomes smaller
than that of its parent nucleus, in qualitative agreement
with the experimental findings of Ref. [14]. Within an
extreme cluster model, 6Li can be interpreted as having
an ε–deuteron clustered wave function, characterized by
a relatively loose configuration and sizable separation be-
tween the clusters. When a ! hyperon is added to form
7
!Li, it occupies the central 1s orbital and interacts at-
tractively with nucleons in both the ε and d clusters.
Since the ! hyperon is distinguishable from nucleons and
does not experience Pauli repulsion, it acts as a “glue’,’
pulling the clusters closer together [83]. This behavior
is reflected in the central panel of Figure 7, where the
proton density of 6Li is broader than the one of 7

!Li.
We observe this glue-like e!ect gradually weakens

with increasing A, decreasing to ωr ↭ 0.01 in 16
! O.

This percent-level compaction agrees with the relativis-
tic mean-field calculations of Ref. [85], which predict only
slight hyperon-induced modifications to the core radius in
this and heavier mass regions. Importantly, the fact that
the ! hyperon resides precisely in the saturation-density
region of the core enables direct calibration of the NN!
interaction in a density regime relevant to astrophysical
applications [26].

V. CONCLUSIONS

We combine two complementary machine-learning ap-
proaches to compute ground-state properties of single-!
hypernuclei up to 16

! O, as they emerge from interacting
neutrons, protons, and ! hyperons. Generalizing the
paradigm introduced in Ref. [54] to the strange sector,
we seek the simplest Hamiltonian capable of reproduc-
ing the ! separation energies of s- and p-shell hypernu-
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Figure 7: Neutron (orange squares), proton (green
triangles), and ! hyperon (blue circles) single-particle
radial density distributions for 5

!He (upper panel), 7
!Li

(middle panel), and 16
! O (lower panel). The protons

densities of the corresponding parent nuclei are also
shown by the black solid line. For illustrative purposes,
the distributions are normalized to unity and multiplied

by a factor of r2, as discussed in the text.

this e!ect, we define the relative radius di!erence as

ωr =

√
→r2p↑A! ↓

√
→r2p↑A→1

√
→r2p↑A→1

, (22)

where
√

→r2p↑!A is the proton point radius of the hypernu-
cleus, and

√
→r2p↑A→1 is the corresponding radius for its

parent nucleus.
We observe a two-regime behavior of ωr as a function

of A, which is consistent with trends observed in the spa-
tial density distributions displayed in Figure 7, where the
proton density distribution of parent nuclei is given by a
thick solid line.

For light systems such as 3
!H, 4

!H, 4
!He, and 5

!He, our
NQS calculations yield ωr > 0, indicating that the proton
radius in the hypernucleus is larger than in the parent
nucleus. In these systems, the ! hyperon is weakly bound
and tends to form an extended halo around the core,
e!ectively “pulling” the nucleons outward from the center
of mass. For 5

!He, we obtain ωr ↔ 0.11, in line with the
pioneering theoretical calculations of Ref. [29] for 4

!H and
4
!He.

Starting from 7
!Li — for which we find ωr ↔ ↓0.13 —

the proton radius of the hypernucleus becomes smaller
than that of its parent nucleus, in qualitative agreement
with the experimental findings of Ref. [14]. Within an
extreme cluster model, 6Li can be interpreted as having
an ε–deuteron clustered wave function, characterized by
a relatively loose configuration and sizable separation be-
tween the clusters. When a ! hyperon is added to form
7
!Li, it occupies the central 1s orbital and interacts at-
tractively with nucleons in both the ε and d clusters.
Since the ! hyperon is distinguishable from nucleons and
does not experience Pauli repulsion, it acts as a “glue’,’
pulling the clusters closer together [83]. This behavior
is reflected in the central panel of Figure 7, where the
proton density of 6Li is broader than the one of 7

!Li.
We observe this glue-like e!ect gradually weakens

with increasing A, decreasing to ωr ↭ 0.01 in 16
! O.

This percent-level compaction agrees with the relativis-
tic mean-field calculations of Ref. [85], which predict only
slight hyperon-induced modifications to the core radius in
this and heavier mass regions. Importantly, the fact that
the ! hyperon resides precisely in the saturation-density
region of the core enables direct calibration of the NN!
interaction in a density regime relevant to astrophysical
applications [26].

V. CONCLUSIONS

We combine two complementary machine-learning ap-
proaches to compute ground-state properties of single-!
hypernuclei up to 16

! O, as they emerge from interacting
neutrons, protons, and ! hyperons. Generalizing the
paradigm introduced in Ref. [54] to the strange sector,
we seek the simplest Hamiltonian capable of reproduc-
ing the ! separation energies of s- and p-shell hypernu-
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Figure 7: Neutron (orange squares), proton (green
triangles), and ! hyperon (blue circles) single-particle
radial density distributions for 5

!He (upper panel), 7
!Li

(middle panel), and 16
! O (lower panel). The protons

densities of the corresponding parent nuclei are also
shown by the black solid line. For illustrative purposes,
the distributions are normalized to unity and multiplied

by a factor of r2, as discussed in the text.

this e!ect, we define the relative radius di!erence as

ωr =

√
→r2p↑A! ↓

√
→r2p↑A→1

√
→r2p↑A→1

, (22)

where
√

→r2p↑!A is the proton point radius of the hypernu-
cleus, and

√
→r2p↑A→1 is the corresponding radius for its

parent nucleus.
We observe a two-regime behavior of ωr as a function

of A, which is consistent with trends observed in the spa-
tial density distributions displayed in Figure 7, where the
proton density distribution of parent nuclei is given by a
thick solid line.

For light systems such as 3
!H, 4

!H, 4
!He, and 5

!He, our
NQS calculations yield ωr > 0, indicating that the proton
radius in the hypernucleus is larger than in the parent
nucleus. In these systems, the ! hyperon is weakly bound
and tends to form an extended halo around the core,
e!ectively “pulling” the nucleons outward from the center
of mass. For 5

!He, we obtain ωr ↔ 0.11, in line with the
pioneering theoretical calculations of Ref. [29] for 4

!H and
4
!He.

Starting from 7
!Li — for which we find ωr ↔ ↓0.13 —

the proton radius of the hypernucleus becomes smaller
than that of its parent nucleus, in qualitative agreement
with the experimental findings of Ref. [14]. Within an
extreme cluster model, 6Li can be interpreted as having
an ε–deuteron clustered wave function, characterized by
a relatively loose configuration and sizable separation be-
tween the clusters. When a ! hyperon is added to form
7
!Li, it occupies the central 1s orbital and interacts at-
tractively with nucleons in both the ε and d clusters.
Since the ! hyperon is distinguishable from nucleons and
does not experience Pauli repulsion, it acts as a “glue’,’
pulling the clusters closer together [83]. This behavior
is reflected in the central panel of Figure 7, where the
proton density of 6Li is broader than the one of 7

!Li.
We observe this glue-like e!ect gradually weakens

with increasing A, decreasing to ωr ↭ 0.01 in 16
! O.

This percent-level compaction agrees with the relativis-
tic mean-field calculations of Ref. [85], which predict only
slight hyperon-induced modifications to the core radius in
this and heavier mass regions. Importantly, the fact that
the ! hyperon resides precisely in the saturation-density
region of the core enables direct calibration of the NN!
interaction in a density regime relevant to astrophysical
applications [26].

V. CONCLUSIONS

We combine two complementary machine-learning ap-
proaches to compute ground-state properties of single-!
hypernuclei up to 16

! O, as they emerge from interacting
neutrons, protons, and ! hyperons. Generalizing the
paradigm introduced in Ref. [54] to the strange sector,
we seek the simplest Hamiltonian capable of reproduc-
ing the ! separation energies of s- and p-shell hypernu-
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Figure 7: Neutron (orange squares), proton (green
triangles), and ! hyperon (blue circles) single-particle
radial density distributions for 5

!He (upper panel), 7
!Li

(middle panel), and 16
! O (lower panel). The protons

densities of the corresponding parent nuclei are also
shown by the black solid line. For illustrative purposes,
the distributions are normalized to unity and multiplied

by a factor of r2, as discussed in the text.

this e!ect, we define the relative radius di!erence as

ωr =

√
→r2p↑A! ↓

√
→r2p↑A→1

√
→r2p↑A→1

, (22)

where
√

→r2p↑!A is the proton point radius of the hypernu-
cleus, and

√
→r2p↑A→1 is the corresponding radius for its

parent nucleus.
We observe a two-regime behavior of ωr as a function

of A, which is consistent with trends observed in the spa-
tial density distributions displayed in Figure 7, where the
proton density distribution of parent nuclei is given by a
thick solid line.

For light systems such as 3
!H, 4

!H, 4
!He, and 5

!He, our
NQS calculations yield ωr > 0, indicating that the proton
radius in the hypernucleus is larger than in the parent
nucleus. In these systems, the ! hyperon is weakly bound
and tends to form an extended halo around the core,
e!ectively “pulling” the nucleons outward from the center
of mass. For 5

!He, we obtain ωr ↔ 0.11, in line with the
pioneering theoretical calculations of Ref. [29] for 4

!H and
4
!He.

Starting from 7
!Li — for which we find ωr ↔ ↓0.13 —

the proton radius of the hypernucleus becomes smaller
than that of its parent nucleus, in qualitative agreement
with the experimental findings of Ref. [14]. Within an
extreme cluster model, 6Li can be interpreted as having
an ε–deuteron clustered wave function, characterized by
a relatively loose configuration and sizable separation be-
tween the clusters. When a ! hyperon is added to form
7
!Li, it occupies the central 1s orbital and interacts at-
tractively with nucleons in both the ε and d clusters.
Since the ! hyperon is distinguishable from nucleons and
does not experience Pauli repulsion, it acts as a “glue’,’
pulling the clusters closer together [83]. This behavior
is reflected in the central panel of Figure 7, where the
proton density of 6Li is broader than the one of 7

!Li.
We observe this glue-like e!ect gradually weakens

with increasing A, decreasing to ωr ↭ 0.01 in 16
! O.

This percent-level compaction agrees with the relativis-
tic mean-field calculations of Ref. [85], which predict only
slight hyperon-induced modifications to the core radius in
this and heavier mass regions. Importantly, the fact that
the ! hyperon resides precisely in the saturation-density
region of the core enables direct calibration of the NN!
interaction in a density regime relevant to astrophysical
applications [26].

V. CONCLUSIONS

We combine two complementary machine-learning ap-
proaches to compute ground-state properties of single-!
hypernuclei up to 16

! O, as they emerge from interacting
neutrons, protons, and ! hyperons. Generalizing the
paradigm introduced in Ref. [54] to the strange sector,
we seek the simplest Hamiltonian capable of reproduc-
ing the ! separation energies of s- and p-shell hypernu-

<latexit sha1_base64="6i25fcgNvB4q45gdreuTyfBfKio=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaRI67LgxkUXFewDmhgmk0k7dCYJMxMhhPorblwo4tYPceffOGmz0NYDA4dzzuXeOX7CqFSW9W1sbG5t7+xW9qr7B4dHx+bJ6UDGqcCkj2MWi5GPJGE0In1FFSOjRBDEfUaG/uym8IePREgaR/cqS4jL0SSiIcVIackzaw9tz+nqfICgI3jepfOqZ9athrUAXCd2SeqgRM8zv5wgxiknkcIMSTm2rUS5ORKKYkbmVSeVJEF4hiZkrGmEOJFuvjh+Di+0EsAwFvpFCi7U3xM54lJm3NdJjtRUrnqF+J83TlV47eY0SlJFIrxcFKYMqhgWTcCACoIVyzRBWFB9K8RTJBBWuq+iBHv1y+tk0GzYrUbr7qreaZZ1VMAZOAeXwAZt0AG3oAf6AIMMPINX8GY8GS/Gu/GxjG4Y5UwN/IHx+QOMFJQH</latexit>

7
!Li

12

0
1

2
3

4
5

6
r2

� �
(r

)
[fm

�
1 ]

⇥10�2

proton

neutron

�-hyperon

proton-parent

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

r2
� �

(r
)

[fm
�

1 ]

⇥10�2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r [fm]

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

r2
� �

(r
)

[fm
�

1 ]

⇥10�2

Figure 7: Neutron (orange squares), proton (green
triangles), and ! hyperon (blue circles) single-particle
radial density distributions for 5

!He (upper panel), 7
!Li

(middle panel), and 16
! O (lower panel). The protons

densities of the corresponding parent nuclei are also
shown by the black solid line. For illustrative purposes,
the distributions are normalized to unity and multiplied

by a factor of r2, as discussed in the text.

this e!ect, we define the relative radius di!erence as

ωr =

√
→r2p↑A! ↓

√
→r2p↑A→1

√
→r2p↑A→1

, (22)

where
√

→r2p↑!A is the proton point radius of the hypernu-
cleus, and

√
→r2p↑A→1 is the corresponding radius for its

parent nucleus.
We observe a two-regime behavior of ωr as a function

of A, which is consistent with trends observed in the spa-
tial density distributions displayed in Figure 7, where the
proton density distribution of parent nuclei is given by a
thick solid line.

For light systems such as 3
!H, 4

!H, 4
!He, and 5

!He, our
NQS calculations yield ωr > 0, indicating that the proton
radius in the hypernucleus is larger than in the parent
nucleus. In these systems, the ! hyperon is weakly bound
and tends to form an extended halo around the core,
e!ectively “pulling” the nucleons outward from the center
of mass. For 5

!He, we obtain ωr ↔ 0.11, in line with the
pioneering theoretical calculations of Ref. [29] for 4

!H and
4
!He.

Starting from 7
!Li — for which we find ωr ↔ ↓0.13 —

the proton radius of the hypernucleus becomes smaller
than that of its parent nucleus, in qualitative agreement
with the experimental findings of Ref. [14]. Within an
extreme cluster model, 6Li can be interpreted as having
an ε–deuteron clustered wave function, characterized by
a relatively loose configuration and sizable separation be-
tween the clusters. When a ! hyperon is added to form
7
!Li, it occupies the central 1s orbital and interacts at-
tractively with nucleons in both the ε and d clusters.
Since the ! hyperon is distinguishable from nucleons and
does not experience Pauli repulsion, it acts as a “glue’,’
pulling the clusters closer together [83]. This behavior
is reflected in the central panel of Figure 7, where the
proton density of 6Li is broader than the one of 7

!Li.
We observe this glue-like e!ect gradually weakens

with increasing A, decreasing to ωr ↭ 0.01 in 16
! O.

This percent-level compaction agrees with the relativis-
tic mean-field calculations of Ref. [85], which predict only
slight hyperon-induced modifications to the core radius in
this and heavier mass regions. Importantly, the fact that
the ! hyperon resides precisely in the saturation-density
region of the core enables direct calibration of the NN!
interaction in a density regime relevant to astrophysical
applications [26].

V. CONCLUSIONS

We combine two complementary machine-learning ap-
proaches to compute ground-state properties of single-!
hypernuclei up to 16

! O, as they emerge from interacting
neutrons, protons, and ! hyperons. Generalizing the
paradigm introduced in Ref. [54] to the strange sector,
we seek the simplest Hamiltonian capable of reproduc-
ing the ! separation energies of s- and p-shell hypernu-
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Figure 7: Neutron (orange squares), proton (green
triangles), and ! hyperon (blue circles) single-particle
radial density distributions for 5

!He (upper panel), 7
!Li

(middle panel), and 16
! O (lower panel). The protons

densities of the corresponding parent nuclei are also
shown by the black solid line. For illustrative purposes,
the distributions are normalized to unity and multiplied

by a factor of r2, as discussed in the text.

this e!ect, we define the relative radius di!erence as

ωr =

√
→r2p↑A! ↓

√
→r2p↑A→1

√
→r2p↑A→1

, (22)

where
√

→r2p↑!A is the proton point radius of the hypernu-
cleus, and

√
→r2p↑A→1 is the corresponding radius for its

parent nucleus.
We observe a two-regime behavior of ωr as a function

of A, which is consistent with trends observed in the spa-
tial density distributions displayed in Figure 7, where the
proton density distribution of parent nuclei is given by a
thick solid line.

For light systems such as 3
!H, 4

!H, 4
!He, and 5

!He, our
NQS calculations yield ωr > 0, indicating that the proton
radius in the hypernucleus is larger than in the parent
nucleus. In these systems, the ! hyperon is weakly bound
and tends to form an extended halo around the core,
e!ectively “pulling” the nucleons outward from the center
of mass. For 5

!He, we obtain ωr ↔ 0.11, in line with the
pioneering theoretical calculations of Ref. [29] for 4

!H and
4
!He.

Starting from 7
!Li — for which we find ωr ↔ ↓0.13 —

the proton radius of the hypernucleus becomes smaller
than that of its parent nucleus, in qualitative agreement
with the experimental findings of Ref. [14]. Within an
extreme cluster model, 6Li can be interpreted as having
an ε–deuteron clustered wave function, characterized by
a relatively loose configuration and sizable separation be-
tween the clusters. When a ! hyperon is added to form
7
!Li, it occupies the central 1s orbital and interacts at-
tractively with nucleons in both the ε and d clusters.
Since the ! hyperon is distinguishable from nucleons and
does not experience Pauli repulsion, it acts as a “glue’,’
pulling the clusters closer together [83]. This behavior
is reflected in the central panel of Figure 7, where the
proton density of 6Li is broader than the one of 7

!Li.
We observe this glue-like e!ect gradually weakens

with increasing A, decreasing to ωr ↭ 0.01 in 16
! O.

This percent-level compaction agrees with the relativis-
tic mean-field calculations of Ref. [85], which predict only
slight hyperon-induced modifications to the core radius in
this and heavier mass regions. Importantly, the fact that
the ! hyperon resides precisely in the saturation-density
region of the core enables direct calibration of the NN!
interaction in a density regime relevant to astrophysical
applications [26].

V. CONCLUSIONS

We combine two complementary machine-learning ap-
proaches to compute ground-state properties of single-!
hypernuclei up to 16

! O, as they emerge from interacting
neutrons, protons, and ! hyperons. Generalizing the
paradigm introduced in Ref. [54] to the strange sector,
we seek the simplest Hamiltonian capable of reproduc-
ing the ! separation energies of s- and p-shell hypernu-
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Figure 7: Neutron (orange squares), proton (green
triangles), and ! hyperon (blue circles) single-particle
radial density distributions for 5

!He (upper panel), 7
!Li

(middle panel), and 16
! O (lower panel). The protons

densities of the corresponding parent nuclei are also
shown by the black solid line. For illustrative purposes,
the distributions are normalized to unity and multiplied

by a factor of r2, as discussed in the text.

this e!ect, we define the relative radius di!erence as

ωr =

√
→r2p↑A! ↓

√
→r2p↑A→1

√
→r2p↑A→1

, (22)

where
√

→r2p↑!A is the proton point radius of the hypernu-
cleus, and

√
→r2p↑A→1 is the corresponding radius for its

parent nucleus.
We observe a two-regime behavior of ωr as a function

of A, which is consistent with trends observed in the spa-
tial density distributions displayed in Figure 7, where the
proton density distribution of parent nuclei is given by a
thick solid line.

For light systems such as 3
!H, 4

!H, 4
!He, and 5

!He, our
NQS calculations yield ωr > 0, indicating that the proton
radius in the hypernucleus is larger than in the parent
nucleus. In these systems, the ! hyperon is weakly bound
and tends to form an extended halo around the core,
e!ectively “pulling” the nucleons outward from the center
of mass. For 5

!He, we obtain ωr ↔ 0.11, in line with the
pioneering theoretical calculations of Ref. [29] for 4

!H and
4
!He.

Starting from 7
!Li — for which we find ωr ↔ ↓0.13 —

the proton radius of the hypernucleus becomes smaller
than that of its parent nucleus, in qualitative agreement
with the experimental findings of Ref. [14]. Within an
extreme cluster model, 6Li can be interpreted as having
an ε–deuteron clustered wave function, characterized by
a relatively loose configuration and sizable separation be-
tween the clusters. When a ! hyperon is added to form
7
!Li, it occupies the central 1s orbital and interacts at-
tractively with nucleons in both the ε and d clusters.
Since the ! hyperon is distinguishable from nucleons and
does not experience Pauli repulsion, it acts as a “glue’,’
pulling the clusters closer together [83]. This behavior
is reflected in the central panel of Figure 7, where the
proton density of 6Li is broader than the one of 7

!Li.
We observe this glue-like e!ect gradually weakens

with increasing A, decreasing to ωr ↭ 0.01 in 16
! O.

This percent-level compaction agrees with the relativis-
tic mean-field calculations of Ref. [85], which predict only
slight hyperon-induced modifications to the core radius in
this and heavier mass regions. Importantly, the fact that
the ! hyperon resides precisely in the saturation-density
region of the core enables direct calibration of the NN!
interaction in a density regime relevant to astrophysical
applications [26].

V. CONCLUSIONS

We combine two complementary machine-learning ap-
proaches to compute ground-state properties of single-!
hypernuclei up to 16

! O, as they emerge from interacting
neutrons, protons, and ! hyperons. Generalizing the
paradigm introduced in Ref. [54] to the strange sector,
we seek the simplest Hamiltonian capable of reproduc-
ing the ! separation energies of s- and p-shell hypernu-
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CONCLUSIONS

• First application of NQS to “strange” systems, good agreement with experimental separation 
energy; we distilled the essential elements of hypernuclear binding

• “Easy” to reach A=40 on Argonne-Polaris. Exascale resources needed to compute heavy 
hypernuclei with more sophisticated interactions. 

• Formalism directly applicable to study the onset of hyperons in neutron-star matter 
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PERSPECTIVES

• Use equivariant neural-network to target state with given quantum numbers (J in particular).

• Implement high-resolution phenomenological and chiral-EFT interactions.

➡ Linear response with integral-transform techniques 

• Dynamical observables

➡ Real-time quantum dynamics with the TdVMC

➡ Efficient calculation of excited states

➡ Neutron-star matter equation of state
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