NUCLEI & HYPERNUCLEI WITH NEURAL QUANTUM STATES

ANDREA DI DONNA

XX Conference on Theoretical Nuclear Physics in Italy

October 2, 2025

"AB-INITIO" NUCLEAR THEORY

Illustration by APS / Alan Stonebraker

NUCLEAR HAMILTONIAN

Realistic nuclear Hamiltonians include two- and three-body potentials

$$H = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

THE QUANTUM MANY-BODY PROBLEM

Non relativistic many body theory aims at solving the many-body Schrödinger equation

$$H\Psi_n(x_1,\ldots,x_A) = E_n\Psi_n(x_1,\ldots,x_A)$$

Nucleons are fermions, so the wave function must be anti-symmetric

$$\Psi_n(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_A) = -\Psi_n(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_A)$$

THE QUANTUM MANY-BODY PROBLEM

A guide to Feynman diagrams in the many-body problem

CURSE OF DIMENSIONALITY

NEURAL-NETWORK QUANTUM STATES

Quantum states of physical interest have distinctive features and intrinsic structures

NEURAL-NETWORK QUANTUM STATES

$$E_V \equiv \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} > E_0$$

$$E_V \simeq \frac{1}{N} \sum_{X \in |\Psi_V(X)|^2} \frac{\langle X|H|\Psi_V\rangle}{\langle X|\Psi_V\rangle}$$

PFAFFIAN-JASTROW ANSATZ

$$\Phi_{PJ}(X) = e^{J(X)} \times \text{pf} \begin{bmatrix} 0 & \phi(x_1, x_2) & \cdots & \phi(x_1, x_N) \\ \phi(x_2, x_1) & 0 & \cdots & \phi(x_2, x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(x_N, x_1) & \phi(x_N, x_2) & \cdots & 0 \end{bmatrix}$$

The above matrix has to be skew-symmetric:

$$\phi(x_i, x_j) = \eta(x_i, x_j) - \eta(x_j, x_i)$$

Example:
$$\text{pf} \begin{bmatrix} 0 & \phi_{12} & \phi_{13} & \phi_{14} \\ -\phi_{12} & 0 & \phi_{23} & \phi_{24} \\ -\phi_{13} & -\phi_{23} & 0 & \phi_{34} \\ -\phi_{14} & -\phi_{24} & -\phi_{34} & 0 \end{bmatrix} = \phi_{12}\phi_{34} - \phi_{13}\phi_{24} + \phi_{14}\phi_{23}$$

PFAFFIAN-JASTROW ANSATZ

SLATER JASTROW ANSATZ

$$J(X) = \rho_F \left[\sum_i \vec{\phi}_{\mathcal{F}}(\bar{\mathbf{r}}_i, \mathbf{s}_i) \right]$$

NEURAL BACKFLOW CORRELATIONS

The nodal structure is improved with neural back-flow transformations $\mathbf{x}_i \longrightarrow \phi(\mathbf{x}_i; \mathbf{x}_{j\neq i})$

Di Luo and B. K. Clark, Phys. Rev. Lett. 122, 226401 (2019)

NEURAL BACKFLOW CORRELATIONS

The nodal structure is improved with neural back-flow transformations $\mathbf{x}_i \longrightarrow \phi(\mathbf{x}_i; \mathbf{x}_{j \neq i})$

$$\mathbf{x}_i \longrightarrow \phi(\mathbf{x}_i; \mathbf{x}_{i \neq i})$$

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

 NN potential fit to s-wave np scattering lengths and effective ranges

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

3NF adjusted to reproduce the energy of ³H.

Andrea Di Donna, Ph.D. student at the University of Trento, in collaboration with Prof. Francesco Pederiva.

NUCLEI WITH A STRANGE PARTICLE

Hypernuclei: bound state between an ordinary nucleus with one (or more) hyperons

Our work: consider single-\Lambda hypernuclei to begin with

THE HYPERON PUZZLE

THE HYPERON PUZZLE

HYPERON-NUCLEON POTENTIAL

$$V_{\mathrm{N}\Lambda} = \sum_{\mathrm{IS}} \tilde{C}_{\lambda}^{\mathrm{IS}} \sum_{i} \mathcal{P}_{\mathrm{IS}} (i\Lambda) \, \delta_{\lambda}(\mathbf{r}_{i\Lambda})$$

• T=1/2, S=1 • T=1/2, S=0

Channel	IS	$C_{\rm IS} \ ({ m MeV})$	$\lambda_{\rm IS}~({\rm fm}^{-1})$	$a_{\rm exp}~({\rm fm})$	$r_{\rm exp}~({\rm fm})$
np	10	-31.0633 -68.3747	1.10117	-23.7148(43)	2.750(18)
	01	-68.3747	1.30512	5.4112(15)	1.7436(19)
$p\Lambda$	$\frac{1}{2}0$	-33.5417	1.54720	-1.80	2.80
	$\frac{1}{2}$ 1	-25.3115	1.41379	-1.60	3.30

HYPERON-NUCLEON-NUCLEON POTENTIAL

$$V_{\mathrm{NN}\Lambda} = \sum_{\mathrm{IS}} \tilde{D}_{\lambda}^{\mathrm{IS}} \sum_{i < j} \mathcal{Q}_{\mathrm{IS}}(ij\Lambda) \delta_{\lambda}(\vec{r}_{i\Lambda}) \delta_{\lambda}(\vec{r}_{j\Lambda}).$$

Fit to hyper nuclear separation energies

System	$B_{\Lambda} \text{ (MeV)}$	σ (MeV)	IS Dependence
$^3_\Lambda { m H}$	0.164	0.043	$\left(0\frac{1}{2}\right)$
$^4_{\Lambda} \mathrm{H}_{S=0}$	2.169	0.042	$\left(0\frac{1}{2}\right),\ \left(1\frac{1}{2}\right)$
$^4_{\Lambda}\mathrm{H}_{S=1}$	1.081	0.046	$(0\frac{1}{2}), (1\frac{1}{2}), (0\frac{3}{2})$
$^5_\Lambda { m He}$	3.102	0.030	$(0\frac{1}{2}), (1\frac{1}{2}), (0\frac{3}{2})$
$^{16}_{\Lambda}{ m O}$	13.00	0.089	$(0\frac{1}{2}), (1\frac{1}{2}), (0\frac{3}{2})$

ESSENTIAL HAMILTONIAN

Good agreement with experimental data, intermediate hypernuclei somewhat under-bound.

SINGLE-PARTICLE DENSITIES

SINGLE-PARTICLE DENSITIES

SINGLE-PARTICLE DENSITIES

CONCLUSIONS

• First application of NQS to "strange" systems, good agreement with experimental separation energy; we distilled the essential elements of hypernuclear binding

 "Easy" to reach A=40 on Argonne-Polaris. Exascale resources needed to compute heavy hypernuclei with more sophisticated interactions.

Formalism directly applicable to study the onset of hyperons in neutron-star matter

PERSPECTIVES

- Use equivariant neural-network to target state with given quantum numbers (J in particular).
 - Efficient calculation of excited states

- Implement high-resolution phenomenological and chiral-EFT interactions.
 - → Neutron-star matter equation of state

- Dynamical observables
 - ➡ Linear response with integral-transform techniques
 - ➡ Real-time quantum dynamics with the TdVMC

THANK YOU