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The thermodynamics of QCD

From a combination of approaches (experiment, models, first principle calculations, etc.),

we are pretty sure of some things, and expect others.

� Early Universe-like conditions at µB = 0

(matter-anti-matter symmetry), large T

� Hadron gas at low T &µ

� Quark gluon plasma (QGP) at high T ||µ

� Crossover at zero density at T ≃ 160MeV

� Ordinary nuclear matter at T ≃ 0 and

µB ≃ 922MeV + liquid-gas transition

� Critical point? Exotic phases?

Main exploration tools: simulations of QCD on the lattice

sdsdfsdfdfsiadasdasdad and heavy-ion collisions (LHC, RHIC, SPS, AGS, FAIR†, JPARC†)
† in the future
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Theory: lattice QCD

In a nutshell, lattice QCD amounts to calculating path integrals like

Z[A, ψ̄, ψ] =

∫
DAµ(x)Dψ̄(x)Dψ(x) e−

∫
d4xLE [A,ψ̄,ψ]

by defining the theory on a discretized 3+1d lattice with N3
s ×Nτ sites.

� Quark fields ψ̄, ψ are defined on lattice sites, gauge fields

Aµ are the lattice links Uµ = exp[iaAµ] ∈ SU(3).

� Now, one can calculate a finite number of integrals to

evaluate expressions of the like:

Z[U, ψ̄, ψ] =

∫
DU Dψ̄Dψ e−SG[U,ψ̄,ψ]−SF [U,ψ̄,ψ]

where SG and SF are the gauge and fermion actions.

Ideally, take the continuum (Nτ → ∞) and infinite volume (Ns/Nτ → ∞) limits 2/28



QCD transition: chiral symmetry breaking

Chiral symmetry: exact for mq → 0. Chiral condensate
〈
ψ̄ψ

〉
(order parameter) and

chiral susceptibility:〈
ψ̄ψ

〉
=
T

V

∂ logZ
∂m

χ =
T

V

∂2 logZ
∂m2

Symmetric phase
〈
ψ̄ψ

〉
= 0 at high-T, and SSB

〈
ψ̄ψ

〉
̸= 0 at low-T
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Borsanyi et al., JHEP 1009:073 (2010); Aoki et al., Nature 443, 675–678 (2006)

No volume scaling in susceptibility → QCD transition is a crossover
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The equation of state of QCD

� Crucial input for modeling QCD matter, e.g. hydro simulations of heavy-ion collisions

� Known at µB = 0 to high precision for a few years now (continuum limit, physical

quark masses) −→ Agreement between different calculations

From grancanonical partition function Z

∗ Pressure: p = −kBT ∂ lnZ
∂V

∗ Entropy density: s =
(
∂p
∂T

)
µi

∗ Charge densities: ni =
(
∂p
∂µi

)
T,µj ̸=i

∗ Energy density: ϵ = Ts− p+
∑
i µini

∗ More (Fluctuations, etc...)

Borsányi et al., PLB 370 (2014) 99, Bazavov et al., PRD 90 (2014) 094503 4/28



Experiment: heavy ion collisions

Heavy nuclei colliding at different energy create media with different baryon density
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Measuring the number of final-state hadrons we have an “experimental” sketch of the

phase diagram → chemical freeze-out

⇒ First-principle theoretical methods don’t yet reach as far: what’s beyond? 5/28



Finite density QCD: the sign/complex action problem

Euclidean path integrals are calculated with MC methods using importance sampling and

the Boltzmann weights detM [U ] e−SG[U ]

Z(V, T, µ) =

∫
DUDψDψ̄ e−SF (U,ψ,ψ̄)−SG(U)

=

∫
DU detM(U)e−SG(U)

When a chemical potential is introduced, a problem appears:

[detM(µ)]∗ = detM(−µ∗)

in general the determinant is complex and cannot serve as a statistical weight.

However, that is not the case if :

� there is particle-antiparticle-symmetry (µ = 0):

� the chemical potential is purely imaginary (µ2 < 0)

[detM(µ)]∗ = detM(−µ∗) = detM(µ) ∈ R
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The sign/complex action problem

Because finite-µB physics is of great interest, alternatives have been widely explored:

� Taylor expansion around µB = 0

One calculates derivatives of the QCD pressure at µB = 0, then construct the

expansion:

p(T, µB)

T 4
=

∑
n

c2n(T )
(µB
T

)2n

, cn(T ) =
1

n!

∂n(p/T 4)

∂µnB

∣∣∣∣
µB=0

=
1

n!
χn(T )

� Reweighting

Because the Boltzmann weight contains detM(µB), which is complex, move it to the

observable:

detM(µB) =
detM(µB)

detM(µB = 0)
detM(µB = 0)

� Imaginary chemical potential

Simulate at imaginary µB , then (somehow) analytically continue to real µB
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Simulations at imaginary chemical potential

Since the QCD transition is analytic, we can analytically continue from µ2
B < 0 to µ2

B > 0

continuation
d(p/T^4)/dµ

Tc(µ)

T

µ2/T2

Ro
be

rg
e-

W
ei

ss

real chemical potentialslattice simulations

1.221.622.022.42

ĸ

To mimic experiment, one can impose strangeness neutrality, i.e. fix the chemical

potentials µB , µQ, µS associated to B,Q, S such that:

⟨nS⟩ = 0 ⟨nQ⟩ = 0.4 ⟨nB⟩ 8/28



Finite density QCD from imaginary µB simulations

Among the quantities we can reliably extrapolate to real µB are the transition line

Tc(µB) and the equation of state
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How about critical behavior?

“a critical point is the end point of a phase equilibrium curve. [...] At the critical

point, defined by a critical temperature Tc and a critical pressure pc, phase boundaries

vanish. [...]”

Water Ising model

� The correlation length ξ diverges: ξ → ∞ for T → Tc, p→ pc (i.e. µ→ µc, ρ→ ρc)

� Some quantities show power-law divergences governed by critical exponents α, β, γ, δ, ...

� Very different phenomena share the same critical exponents → universality class
10/28



The critical point of QCD

In general, in order to observe criticality one can

tune the system to the critical point

This is possible e.g. for water and watery mixtures

Williamson et al., J. Chem. Educ. 2021, 98, 7, 2364-2369

STAR Collaboration, PRL 112 (2014) 032302

In QCD we can’t! In heavy-ion collisions, we

can observe final state hadrons

Search for large event-by-event fluctuations:

κ2 ∼ ξ2 κ3 ∼ ξ9/2 κ4 ∼ ξ7

Stephanov, PRL 102 (2009) 032301
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Signals of critical behavior

We do know: the critical point of QCD has same universality class as 3D Ising model
Pisarski, Wilczek, PRD 29 (1984) 338

We expect non-monotonic dependence of net-proton kurtosis vs collision energy (left)
Stephanov, PRL 107 (2011) 052301
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STAR Collaboration, PRL 135 (2025) 142301

Recent data show only hints, it’s not clear if and where there is non-monotonicity
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The QCD critical point

From the theory side, many different models predicting a critical point
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→ and recent estimates seem to “converge”
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Large density QCD from the lattice

I. Large lattices in the continuum limit
Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

II. Extreme statistics on a 163 × 8 lattice
Yang-Lee edge singularities

Adam, PP et al., 2507.13254
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Critical point location from entropy contours

Recently proposed to look at contours of constant entropy, and search for where they meet
Shah et al., 2410.16206

B,c

B,c

Through Taylor expansion, predicted a critical point at T ∼ 100 MeV, µB ∼ 600 MeV
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Critical point location from entropy contours

Full quantitative analysis with same method, but:

� analytical continuation from imaginary µB

� new equation of state at µB = 0 with 2x better precision
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Our entropy contours

We generalized the approach and employed new data. Starting from baryon density at

imaginary µB , obtain the entropy entropy at imaginary µB (total 16x systematics here)

s(T, µB) = s(T, µB = 0) +

∫ µB

0

dµ′
B

∂nB(T, µ
′
B)
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Our entropy contours

Now we extrapolate Ts(µB , T0), i.e. the temperature at which the entropy has the value it has at

T0, µB = 0. We use two functional forms:

Ts(µ
2
B , T0) =

T0 + aµ2
B

1 + bµ2
B

Ts(µ
2
B , T0) = T0 + aµ2

B + bµ4
B

If there is a critical point, Ts is non-monotonic above µB > µBC , so we look for the smallest

values of the derivative at 1σ and 2σ levels (total 48x systematics per µB value)
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The exclusion region

This gives us indication of where the derivative is compatible with 0 at the 1σ and 2σ

levels, temperature by temperature → 2σ exclusion region
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This is the first rigorous exclusion range from lattice QCD.
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Large density QCD from the lattice

Large lattices in the continuum limit
Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

II. Extreme statistics on a 163 × 8 lattice
Yang-Lee edge singularities

Adam, PP et al., 2507.13254



Critical point and universality

In the Ising model, scaling fields are the reduced temperature t = T−Tc

Tc
and the magnetic

field h. Universality implies they can be mapped onto QCD coordinates as:

t = At∆T +Bt∆µB

h = Ah∆T +Bh∆µB

with ∆T = T − Tc, ∆µB = µB − µBC .

C. Schmidt, Lattice 24
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Critical point: Yang-Lee edge singularities

� The partition function of a thermodynamic system

has in general complex zeroes called Lee- Yang zeroes

� When the critical point is approached, these zeroes

approach the real (µB) axis

� Zeroes of Z are singularities of the free energy

f ∼ logZ, and they accumulate at the so-called

Yang-Lee edge (YLE) singularities
C. Schmidt, Lattice 24

� In the vicinity of a critical point, the scaling variable z = t/hβδ is the only “coordinate”,

and the YLE are universally located at:

zc = |zc| exp
(
iπ

2βδ

)
� In QCD this translates to expected scaling forms for the real and imaginary parts:

Re∆µB = µBC + c1∆T (+c2∆T
2) and Im∆µB = c3∆T

βδ 20/28



Critical point: Yang-Lee edge singularities

So, the idea is:

� somehow determine the complex locations of the YLE

� use the expected scaling to find where Im∆µB = 0, i.e. where the critical point is

Our setup:

� Single 163 × 8 lattice, huge statistics (O(106) at each T = 110− 300 MeV)

� Nf = 2 + 1 flavours of physical quark masses

� Our recent 4HEX action has small discretization effects (i.e., Nτ = 8 is not that

small)

Important caveats: (due to prohibitive cost)

� No continuum limit, as only Nτ = 8 lattices were used

� No infinite volume limit, nor a finite volume scaling analysis

� Truncated Taylor series will affect the location of the YLE singularities

� The extrapolation to TCEP covers a large portion of the phase diagram 21/28



Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

χBn (T ) =
∂n(p/T 4)

∂(µB/T )n

∣∣∣∣
µB=0
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The extreme statistics is reflected in tiny errors, unprecedented precision
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Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

χBn (T ) =
∂n(p/T 4)

∂(µB/T )n
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Systematics

We model the pressure with a functional form allowing for singularities, retaining the

known symmetries (charge conjugation µB ↔ −µB and Roberge-Weiss periodicity)

� For each T , we use a 2/2 Padé in cosh(µB)− 1, fitted to our χBn coefficients:

F (µB) =
a(cosh(µB)− 1)

1 + c(cosh(µB)− 1) + d(cosh(µB)− 1)2

Systematics # 1: repeat the procedure for related quanties (χB1 , χ
B
2 ), also singular!

� Universality fixes the approach to the critical point:

(ImµLY )
1/βδ = c3(T − Tc)

Systematics # 2: but other asymptotically equivalent ansätze are allowed:

(Imµ2
LY )

1/βδ ∼ (Imµ3
LY )

1/βδ ∼ (Imµ4
LY )

1/βδ

� The range where the ansätze hold is not known a priori (non universal)

Systematics # 3: vary the fit range in T 23/28



Systematics #1, different observables (x3)

Estimates for the LYE singularities from p (χ0), χ1 and χ2
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Systematics #2, different ansätze for T dependence (x4)

Different ansätze all give good fits
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Systematics #3, fit range (x6)

Since we can’t know a priori where the scaling ansatz is valid, fits with different T ranges

must be treated equally
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Systematics: wrap up

Putting together the 3× 4× 6 = 72 analyses:
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We find an 84% probability that the critical point is at T < 103 MeV or does not exist.
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Summary

Is there a critical point in the QCD phase diagram? Can lattice say something?

YES! (it can say something)

i. Critical point exclusion range: first ever, admittedly not very stringent yet, but

the method is systematically improvable

ii. Yang-Lee edge singularities offer an intriguing chance, but the numerics suggest to

be very cautious
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BACKUP



The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of

the transition

Left: physical masses Right: infinite masses (pure gauge)

� For a crossover (left), the peak height is independent of the volume

� For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi, PP et al., PRD 105 (2022)



The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition

changes

� At the physical point ms/mud ≃ 27, the transition is a smooth crossover!

� In the heavy-quark limit (pure gauge), the transition is first order



Measures of Tc vs V

Combining the estimates of Tc from different observables and volumes we can draw some

conclusions:

� Chiral transition Tc estimates have larger

V -dependence and decrease with the volume

� Deconfinement Tc estimates have milder

V -dependence and increase with the volume

� The spread is ∼ 10 MeV for LT > 2.5

� Clear ordering Tχc < T
SQ
c appears above

LT = 3
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This suggests that studies of Tc can be performed on lattice with smaller volumes based on

deconfinement-related observables



Simulations at imaginary chemical potential

� While for real chemical potential

(µ2 > 0) detM(U) is complex, for

imaginary chemical potential (µ2 < 0)

detM(U) is real

� We perform simulations at imaginary

chemical potentials:

µ̂B = i
jπ

8
j = 0, 1, 2, ...

continuation
d(p/T^4)/dµ

Tc(µ)

T

µ2/T2

Ro
be

rg
e-

W
ei

ss

real chemical potentialslattice simulations

1.221.622.022.42

ĸ

We then analytically continue to µ2 > 0 by means of suitable extrapolation schemes



Simulations at imaginary chemical potential

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

⟨nS⟩ = 0 ⟨nQ⟩ = 0.4 ⟨nB⟩ or µQ = µS = 0



The width of the transition at finite chemical potential

We can extrapolate our results for
〈
ψ̄ψ

〉
along contours of constant

〈
ψ̄ψ

〉
(left) or constant

µB/T (right)
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The extrapolated
〈
ψ̄ψ

〉
at finite µB is quite precise for µB < 3T


