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The thermodynamics of QC

From a combination of approaches (experiment, models, first principle calculations, etc.),
we are pretty sure of some things, and expect others.
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Critical point? Exotic phases? Baryon Chemical Potential - i(MeV)
Main exploration tools: simulations of QCD on the lattice
and heavy-ion collisions (LHC, RHIC, SPS, AGS, FAIR!, JPARCY)
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Theory: lattice QCD

In a nutshell, lattice QCD amounts to calculating path integrals like
Z[4,9,9] = [ DAL@) DI(0) Dy(a) ! o Lxldiol

by defining the theory on a discretized 3+1d lattice with N2 x N, sites.

e Quark fields 1, are defined on lattice sites, gauge fields |
A, are the lattice links U,, = exp[iaA,] € SU(3). P

e Now, one can calculate a finite number of integrals to
evaluate expressions of the like:

P

Z[U/(Z),'L/)] _ /DUD'L/_JD’(/J e*SG[U@,w]*SF[UﬂLJP]

where S¢ and Sr are the gauge and fermion actions. :
gluon quark

Ideally, take the continuum (N, — co) and infinite volume (Ns/N, — 00) limits 2/28




QCD transition: chiral symmetry breaking

Chiral symmetry: exact for my; — 0. Chiral condensate <’(Z1/)> (order parameter) and

chiral susceptibility:
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Borsanyi et al., JHEP 1009:073 (2010); Aoki et al., Nature 443, 675—678 (2006)

No volume scaling in susceptibility — QCD transition is a crossover 8/28



The equation of state of QCD

e Crucial input for modeling QCD matter, e.g. hydro simulations of heavy-ion collisions

e Known at pp = 0 to high precision for a few years now (continuum limit, physical
quark masses) ——  Agreement between different calculations
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From grancanonical partition function Z 4

x Pressure: p = —kBT%

+ Entropy density: s = (%)w
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+ Charge densities: n; = ( ap) stout HISQ
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* Energy density: e =Ts—p+ >, pin; 1 SaTé = 1
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Borsényi et al., PLB 370 (2014) 99, Bazavov et al, PRD 90 (2014) 094503 4/28



Experiment: heavy ion collisions

Heavy nuclei colliding at different energy create media with different baryon density
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Measuring the number of final-state hadrons we have an “experimental” sketch of the

phase diagram — chemical freeze-out

= First-principle theoretical methods don’t yet reach as far: what’s beyond? 2



Finite density QCD: the sign/complex action problem

Euclidean path integrals are calculated with MC methods using importance sampling and
the Boltzmann weights det M[U] e~V

Z(V,T, ) = /'DU'D’&D'I[J e~ SF(U¥,9)=Sc(U)
= /DU det M (U)e=%¢W)

When a chemical potential is introduced, a problem appears:
[det M (p)]* = det M (—p™)
in general the determinant is complex and cannot serve as a statistical weight.

However, that is not the case if:
e there is particle-antiparticle-symmetry (u = 0):
e the chemical potential is purely imaginary (u? < 0)

[det M (10)]* = det M(—p*) = det M(p) € R
6/28



The sign/complex action problem

Because finite-pup physics is of great interest, alternatives have been widely explored:

e Taylor expansion around pup =0
One calculates derivatives of the QCD pressure at up = 0, then construct the

expansion:

e Reweighting
Because the Boltzmann weight contains det M (up), which is complex, move it to the

observable:
det A[(,LLB)

M _det Mipp)
det M(18) = 30 M (ap = 0)

det M(up = 0)

e Imaginary chemical potential

Simulate at imaginary pp, then (somehow) analytically continue to real ppg
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Simulations at imaginary chemical potential

can analytically continue from p% < 0 to u% >0

Since the QCD transition is analytic, we

A T r . § T
zero chemical potential @ 5
strangeness neutrality T=150 MeV v i3
T=200 MeV 7 o o o o o
3w/4 imaginary strangeness A 4 )
imaginary baryon density Il D%
= d(p/TA4)/dy

Im uStrange
a
N

w4

%42 2‘02 1‘62 1‘22

real chemical potentials
P 12T

2 3n/4 T
lattice simulations

IM pgaryon

strangeness neutrality, i.e. fix the chemical

To mimic experiment, one can impose
potentials pip, 1@, ts associated to B, @, S such that:

<n5> = O <TLQ> = 04 <77,B>
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Finite density QCD from imaginary pp simulations

Among the quantities we can reliably extrapolate to real up are the transition line
T.(pp) and the equation of state
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How about critical behavior?

“a critical point is the end point of a phase equilibrium curve.

vanish. [...]”
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e Some quantities show power-law divergences governed by critical exponents «, 3,7, ¢

e Very different phenomena share the same critical exponents — universality class
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The critical point of QCD

In general, in order to observe criticality one can
tune the system to the critical point

This is possible e.g. for water and watery mixtures

Room 3.0 min 5.5 min 6.0 min
Temperature (One Phase) (One Phase) (Two Phases)

Williamson et al., J. Chem. Educ. 2021, 98, 7, 2364-2369
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In QCD we can’t! In heavy-ion collisions, we

can observe final state hadrons

Search for large event-by-event fluctuations:
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STAR Collaboration, PRL 112 (2014) 032302 11/28



Signals of critical behavior

We do know: the critical point of QCD has same universality class as 3D Ising model
Pisarski, Wilczek, PRD 29 (1984) 338

We expect non-monotonic dependence of net-proton kurtosis vs collision energy (left)
Stephanov, PRL 107 (2011) 052301
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Recent data show only hints, it’s not clear if and where there is non-monotonicity



The QCD critical point

From the theory side, many different models predicting a critical point
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Vovchenko, PRC 111 (2025) 054903

— and recent estimates seem to “converge”
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Large density QCD from the lattice

I. Large lattices in the continuum limit

Exclusion region for the critical point from lattice simulations!

Borsanyi, PP et al., 2502.10267

I1. Extreme statistics on a 163 x 8 lattice

Yang-Lee edge singularities

Adam, PP et al.,, 2507.13254



Large density QCD from the lattice

I. Large lattices in the continuum limit

Exclusion region for the critical point from lattice simulations!

Borsanyi, PP et al., 2502.10267

Extreme statistics on a 16° x 8 lattice
Yang-Lee edge singularities

Adam, PP etal, 2507.13254



Critical point location from entropy contours

Recently proposed to look at contours of constant entropy, and search for where they meet
Shah et al.,, 2410.16206
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Through Taylor expansion, predicted a critical point at T' ~ 100 MeV, up ~ 600 MeV
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Critical point location from entropy contours

Full quantitative analysis with same method, but:

e analytical continuation from imaginary up

e new equation of state at up = 0 with 2x better precision
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and different goal: try to exclude the CP somewhere in the phase diagram 15/28




Our entropy contours

We generalized the approach and employed new data. Starting from baryon density at
imaginary pp, obtain the entropy entropy at imaginary pp (total 16x systematics here)
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The points (right) are where the entropy has the same exact value (color-by-color)
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Our entropy contours

Now we extrapolate Ts(us, To), i.e. the temperature at which the entropy has the value it has at
To, us = 0. We use two functional forms:
To + app

Ty (u%,To) = T, 2 o
1+ 6.2 (15, To) otaup +bup

To(pu, To) =

If there is a critical point, 7 is non-monotonic above up > pugrc, so we look for the smallest

values of the derivative at 1o and 20 levels (total 48x systematics per up value)
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The exclusion region

This gives us indication of where the derivative is compatible with 0 at the 1o and 20
levels, temperature by temperature — 20 exclusion region

! ! WB Transition line [2002.02821

170 WB finite volume transition line [2410.06216
Freezeout Andronic et al [1710.09425
Freezeout estimate Lysenko et al [2408.06473] =
STAR freezeout [1701.07065] H———
DSE-crossover [2106.08356
160 26 exclusion range [This work]

0 100 200 300 400 500 600
Hp [MeV]

This is the first rigorous exclusion range from lattice QCD. 18/28



Large density QCD from the lattice

Large lattices in the continuum limit
Exclusion region for the critical point from lattice simulations!

Borsanyi, PP et al., 2502.10267

I1. Extreme statistics on a 163 x 8 lattice

Yang-Lee edge singularities

Adam, PP et al.,, 2507.13254



Critical point and universality

In the Ising model, scaling fields are the reduced temperature t = % and the magnetic

field h. Universality implies they can be mapped onto QCD coordinates as:
t=AAT + B/App
h=A,AT + B,Aug

with AT =T —T,, Aup = up — UBc-

First order Crossover

M<o0

Ferr Par

/'tcep Hp

C. Schmidt, Lattice 24
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Critical point: Yang-Lee edge singularities

Imh 4 complex i plane

e The partition function of a thermodynamic system

has in general complex zeroes called Lee- Yang zeroes 4
e When the critical point is approached, these zeroes t
approach the real (up) axis
t
e Zeroes of Z are singularities of the free energy ! .
t >
f ~log Z, and they accumulate at the so-called —
h,=0 Re /

Yang-Lee edge (YLE) singularities

C. Schmidt, Lattice 24

e In the vicinity of a critical point, the scaling variable z = t/h”° is the only “coordinate”,

and the YLE are universally located at:

T
Ze = |zc| exp (TB(S)

e In QCD this translates to expected scaling forms for the real and imaginary parts:

ReAup = ppc + a1l AT (+c2AT?) and ImApp = csAT?? 20/28



Critical point: Yang-Lee edge singularities

So, the idea is:

e somehow determine the complex locations of the YLE

e use the expected scaling to find where ImApup = 0, i.e. where the critical point is
Our setup:

e Single 163 x 8 lattice, huge statistics (O(10°) at each T'= 110 — 300 MeV)

e Ny =241 flavours of physical quark masses

e Our recent 4HEX action has small discretization effects (i.e., N, = 8 is not that
small)

Important caveats: (due to prohibitive cost)

e No continuum limit, as only N, = 8 lattices were used

No infinite volume limit, nor a finite volume scaling analysis

Truncated Taylor series will affect the location of the YLE singularities

The extrapolation to Tcgp covers a large portion of the phase diagram 21/28



Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

4
n
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The extreme statistics is reflected in tiny errors, unprecedented precision
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Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

X6

" IuB/T)" |, p=0
0.051
A i
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The extreme statistics is reflected in tiny errors, unprecedented precision
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Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

o (p/T")
B 7P =
Xn ( ) a(MB/T)n 1i5=0
{ Spline fit

2 with 2, =0.93

0 . I { ] § Sim. data
g 1 EIxExEy II I = g
<, H ﬂ}l

_4<

100 150 200 250 300
T [MeV]

The extreme statistics is reflected in tiny errors, unprecedented precision

22/28



Systematics

We model the pressure with a functional form allowing for singularities, retaining the
known symmetries (charge conjugation up <> —pup and Roberge-Weiss periodicity)
e For each T, we use a 2/2 Padé in cosh(ug) — 1, fitted to our x2 coefficients:

B a(cosh(up) — 1)
Flus) = 1+ ¢(cosh(pp) — 1) + d(cosh(up) — 1)*

Systematics # 1: repeat the procedure for related quanties (xF, x¥), also singular!

e Universality fixes the approach to the critical point:
(Impry )/ = c3(T - T.)
Systematics # 2: but other asymptotically equivalent ansétze are allowed:

(Impfy) /%% ~ (Impagy )P0 ~ (Impgy ) V/P0

e The range where the ansétze hold is not known a priori (non universal)

Systematics # 3: vary the fit range in T 23/28



Systematics #1, different observables (x3)

Estimates for the LYE singularities from p (xo), x1 and x2

2.31 Cosh-Padé for Ap
2.2 1 ; 155 ® Cosh-Padé for x§
é55 ® Cosh-Padé for x5
2.1 55 /
/'4 50 '
E 2.0
50 g
\:Ei:i 1.9 P 150 /7/
€ (£
=18 7/ 140
Yy v
Lo /3,5// 135
16 7 :/ > 130
1.5 1

30 35 40 45 50 55 6.0
Re(ug/T)

NOTE: here the spreads reflect the statistical errors only 24/28



Systematics #2, different ansatze for 7' dependence (x4)

Different ansatze all

give good fits
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Systematics #3, fit range (x6)

Since we can’t know a priori where the scaling ansatz is valid, fits with different 7" ranges
must be treated equally

Im (py) (/B9

801 o= Teer =44.6%392 MeV
60 4 —o— Tcep =91.6%%8 Mev
—e— nHRG@Im!=n
40 2
> T
20 A e R
0] ——e—— 184 T [MeV]
0 50 100 150 200

The dependence on the fit range is substantial. 26/28



Systematics: wrap up

Putting together the 3 x 4 x 6 = 72 analyses:

0.025 1 3 PDF of stat. & syst. weights
1 PDF of syst. weights

>
= 0.020
0
c
[}
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>
5=
=
s 0-010 1
Ko}
o
_
Q 0.005 -

0.000 +— I_I. 7

-150 -100 -50 0 50 100 150

Tcer [MeV]

We find an 84% probability that the critical point is at 7' < 103 MeV or does not exist.
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Summary

Is there a critical point in the QCD phase diagram? Can lattice say something?

YES! (it can say something)

i. Critical point exclusion range: first ever, admittedly not very stringent yet, but

the method is systematically improvable

ii. Yang-Lee edge singularities offer an intriguing chance, but the numerics suggest to

be very cautious

0.025 1 =3 PDF of stat. & syst. weights
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The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of
the transition

Left: physical masses Right: infinite masses (pure gauge)
I L e W LT=4 W LT=45
200 + — W L7-5 W LT=6 W LT=8
- A Bx18% 1 8
C = * o 6x24% ,
150 § § o 6x325 ] .
~ B = T
S X i oa ] ER
> B B & i T B
100 - =% [} 1 Z
[ gt : ] KR
F$3 = ] )
- I“
S I T T ! —
34 35 36 37 7::.()(14 =0.002 0.000 0.002 0.004
6/q2 wy (T =T, (LT))

e For a crossover (left), the peak height is independent of the volume
e For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsanyi, PP et al., PRD 105 (2022)



The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition

changes
o N=2 PURE
m, - |GAUGE
s 2 order 2" order \ 1%t
o) Z(2) -order|
physical point N=3
' T S N&=1
mu,d ®

e At the physical point mg/myq =~ 27, the transition is a smooth crossover!

e In the heavy-quark limit (pure gauge), the transition is first order



Measures of T, vs V

Combining the estimates of T, from different observables and volumes we can draw some

conclusions:

e Chiral transition 7, estimates have larger
V-dependence and decrease with the volume

e Deconfinement T, estimates have milder

V-dependence and increase with the volume o
>
(2]
g © 1 - k of xgy F——t
o The spread is ~ 10 MeV for LT > 2.5 g 1% oo
130 pbp = constant B
. S, peak of Sq —x—i
e Clear ordering TX < T, ? appears above 125 ‘ ‘ ‘ [Fq = constant 1 ]
LT =3 2 25 3 35 4 45 5 55

LT

This suggests that studies of T, can be performed on lattice with smaller volumes based on
deconfinement-related observables



Simulations at imaginary chemical potential

Roberge-Weiss

.-

e While for real chemical potential o o o o o
(u* > 0) det M(U) is complex, for
imaginary chemical potential (1 < 0)
det M(U) is real

continuation
d(p/TA4)/dp

e We perform simulations at imaginary
chemical potentials:

fin :i% j=0,1,2,...

242 202 162 1.22
I i i i

lattice simulations | real chemical potentials
p L2IT

We then analytically continue to g% > 0 by means of suitable extrapolation schemes



Simulations at imaginary chemical potential

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

(ng) =0 (nqg) =0.4(np) or  pg=ps=0

LA . — —
zero chemical potential

strangeness neutrality T=150 MeV
T=200 MeV

mriqo

3n/4 imaginary strangeness
imaginary baryon density

IM Hgtrange

0 /4 /2 3w/4 T
IM UBaryon



The width of the transition at finite chemical potential

We can extrapolate our results for <z/;w> along contours of constant <1ZQ/}> (left) or constant
wp/T (right)
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The extrapolated <¢_J1/J> at finite up is quite precise for up < 37T



