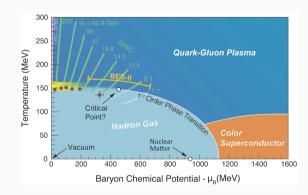
Finite density QCD thermodynamics from lattice simulations

Paolo Parotto, Università di Torino and INFN Torino October 4, 2025, Cortona, Italy


TNPI2025 - XX Conference on Theoretical Nuclear Physics in Italy

The thermodynamics of QCD

From a combination of approaches (experiment, models, first principle calculations, etc.), we are pretty sure of some things, and expect others.

- Early Universe-like conditions at $\mu_B = 0$ (matter-anti-matter symmetry), large T
- Hadron gas at low $T \& \mu$
- Crossover at zero density at $T \simeq 160 \,\mathrm{MeV}$
- Ordinary nuclear matter at $T \simeq 0$ and $\mu_B \simeq 922 \, \mathrm{MeV} + \mathrm{liquid}$ -gas transition
- Critical point? Exotic phases?

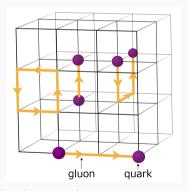
Main exploration tools: simulations of QCD on the lattice

and heavy-ion collisions (LHC, RHIC, SPS, AGS, FAIR $^{\dagger},$ JPARC $^{\dagger})$

[†] in the future

Theory: lattice QCD

In a nutshell, lattice QCD amounts to calculating path integrals like

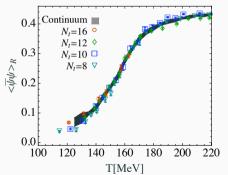

$$\mathcal{Z}[A, \bar{\psi}, \psi] = \int \mathcal{D}A_{\mu}(x) \, \mathcal{D}\bar{\psi}(x) \, \mathcal{D}\psi(x) \, e^{-\int d^4x \, \mathcal{L}_E[A, \bar{\psi}, \psi]}$$

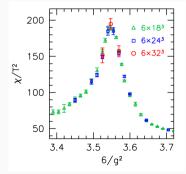
by defining the theory on a discretized 3+1d lattice with $N_s^3 \times N_\tau$ sites.

- Quark fields $\bar{\psi}, \psi$ are defined on lattice sites, gauge fields A_{μ} are the lattice links $U_{\mu} = \exp[iaA_{\mu}] \in SU(3)$.
- Now, one can calculate a *finite* number of integrals to evaluate expressions of the like:

$$Z[U, \bar{\psi}, \psi] = \int \mathcal{D}U \, \mathcal{D}\bar{\psi} \, \mathcal{D}\psi \, e^{-S_G[U, \bar{\psi}, \psi] - S_F[U, \bar{\psi}, \psi]}$$

where S_G and S_F are the gauge and fermion actions.


Ideally, take the continuum $(N_{\tau} \to \infty)$ and infinite volume $(N_s/N_{\tau} \to \infty)$ limits

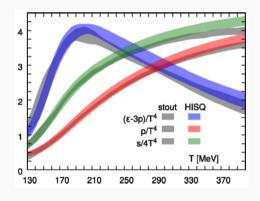

QCD transition: chiral symmetry breaking

Chiral symmetry: exact for $m_q \to 0$. Chiral condensate $\langle \bar{\psi}\psi \rangle$ (order parameter) and chiral susceptibility:

$$\langle \bar{\psi}\psi \rangle = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m}$$
 $\chi = \frac{T}{V} \frac{\partial^2 \log \mathcal{Z}}{\partial m^2}$

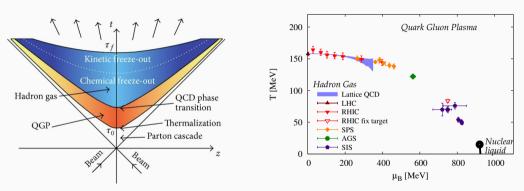
Symmetric phase $\langle \bar{\psi}\psi \rangle = 0$ at high-T, and SSB $\langle \bar{\psi}\psi \rangle \neq 0$ at low-T

Borsanyi et al., JHEP 1009:073 (2010); Aoki et al., Nature 443, 675–678 (2006)


No volume scaling in susceptibility \rightarrow QCD transition is a crossover

The equation of state of QCD

- Crucial input for modeling QCD matter, e.g. hydro simulations of heavy-ion collisions
- Known at $\mu_B = 0$ to high precision for a few years now (continuum limit, physical quark masses) \longrightarrow Agreement between different calculations


From grancanonical partition function $\mathcal Z$

- * Pressure: $p = -k_B T \frac{\partial \ln Z}{\partial V}$
- * Entropy density: $s = \left(\frac{\partial p}{\partial T}\right)_{\mu_i}$
- * Charge densities: $n_i = \left(\frac{\partial p}{\partial \mu_i}\right)_{T,\mu_{j\neq i}}$
- * Energy density: $\epsilon = Ts p + \sum_{i} \mu_{i} n_{i}$
- * More (Fluctuations, etc...)

Experiment: heavy ion collisions

Heavy nuclei colliding at different energy create media with different baryon density

Measuring the number of final-state hadrons we have an "experimental" sketch of the phase diagram \rightarrow **chemical freeze-out**

⇒ First-principle theoretical methods don't yet reach as far: what's beyond?

Finite density QCD: the sign/complex action problem

Euclidean path integrals are calculated with MC methods using importance sampling and the Boltzmann weights det $M[U] e^{-S_G[U]}$

$$Z(V,T,\mu) = \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi} \ e^{-S_F(U,\psi,\bar{\psi}) - S_G(U)}$$
$$= \int \mathcal{D}U \ \det M(U) e^{-S_G(U)}$$

When a chemical potential is introduced, a problem appears:

$$[\det M(\mu)]^* = \det M(-\mu^*)$$

in general the determinant is complex and cannot serve as a statistical weight.

However, that is **not the case if**:

- there is particle-antiparticle-symmetry ($\mu = 0$):
- the chemical potential is purely imaginary $(\mu^2 < 0)$

$$[\det M(\mu)]^* = \det M(-\mu^*) = \det M(\mu) \in \mathbb{R}$$

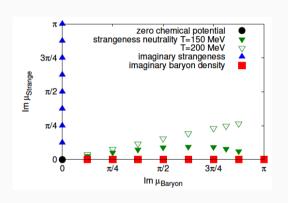
The sign/complex action problem

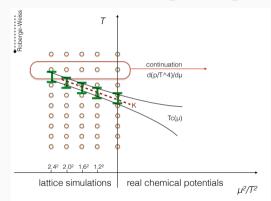
Because finite- μ_B physics is of great interest, alternatives have been widely explored:

• Taylor expansion around $\mu_B = 0$ One calculates derivatives of the QCD pressure at $\mu_B = 0$, then construct the expansion:

$$\frac{p(T,\mu_B)}{T^4} = \sum_n c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n} , \qquad c_n(T) = \frac{1}{n!} \left. \frac{\partial^n(p/T^4)}{\partial \mu_B^n} \right|_{\mu_B = 0} = \frac{1}{n!} \chi_n(T)$$

• Reweighting

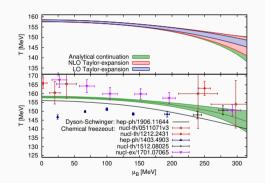

Because the Boltzmann weight contains det $M(\mu_B)$, which is complex, move it to the observable:

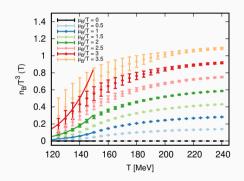

$$\det M(\mu_B) = \frac{\det M(\mu_B)}{\det M(\mu_B = 0)} \det M(\mu_B = 0)$$

• Imaginary chemical potential
Simulate at imaginary μ_B , then (somehow) analytically continue to real μ_B

Simulations at imaginary chemical potential

Since the QCD transition is analytic, we can analytically continue from $\mu_B^2 < 0$ to $\mu_B^2 > 0$

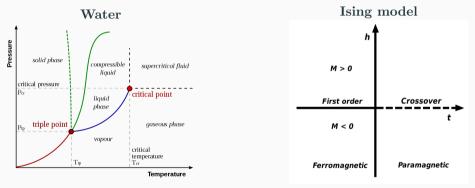



To mimic experiment, one can impose **strangeness neutrality**, i.e. fix the chemical potentials μ_B, μ_Q, μ_S associated to B, Q, S such that:

$$\langle n_S \rangle = 0$$
 $\langle n_Q \rangle = 0.4 \langle n_B \rangle$

Finite density QCD from imaginary μ_B simulations

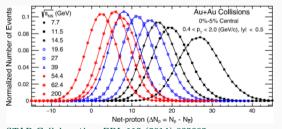
Among the quantities we can reliably extrapolate to real μ_B are the **transition line** $T_c(\mu_B)$ and the **equation of state**

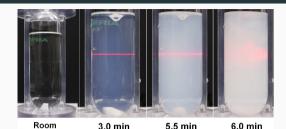


Borsányi, PP, $at\ el.,\ PRL\ 125\ (2020)\ 052001;\ Borsányi,\ PP,\ at\ el.,\ PRL\ 126\ (2021)\ 232001$

How about critical behavior?

"a critical point is the end point of a phase equilibrium curve. [...] At the critical point, defined by a critical temperature T_c and a critical pressure p_c , phase boundaries vanish. [...]"




- The correlation length ξ diverges: $\xi \to \infty$ for $T \to T_c$, $p \to p_c$ (i.e. $\mu \to \mu_c$, $\rho \to \rho_c$)
- Some quantities show power-law divergences governed by **critical exponents** $\alpha, \beta, \gamma, \delta, ...$
- Very different phenomena share the same critical exponents \rightarrow universality class

The critical point of QCD

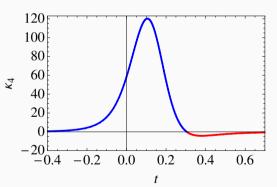
In general, in order to observe criticality one can tune the system to the critical point

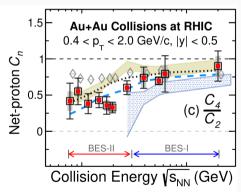
This is possible e.g. for water and watery mixtures

Temperature (One Phase) (One Phase) (Two Phases)
Williamson et al., J. Chem. Educ. 2021, 98, 7, 2364-2369

In QCD we can't! In heavy-ion collisions, we can observe final state hadrons

Search for large event-by-event fluctuations:

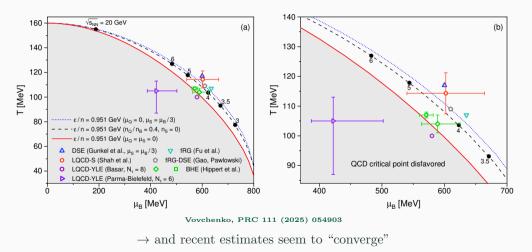

$$\kappa_2 \sim \xi^2 \qquad \qquad \kappa_3 \sim \xi^{9/2} \qquad \qquad \kappa_4 \sim \xi^7$$


Stephanov, PRL 102 (2009) 032301

Signals of critical behavior

We do know: the critical point of QCD has same universality class as 3D Ising model Pisarski, Wilczek, PRD 29 (1984) 338

We expect non-monotonic dependence of net-proton kurtosis vs collision energy (left) Stephanov, PRL 107 (2011) 052301



STAR Collaboration, PRL 135 (2025) 142301

Recent data show only hints, it's not clear if and where there is non-monotonicity

The QCD critical point

From the theory side, many different models predicting a critical point

13/28

Large density QCD from the lattice

I. Large lattices in the continuum limit

Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

II. Extreme statistics on a $16^3 \times 8$ lattice

Yang-Lee edge singularities

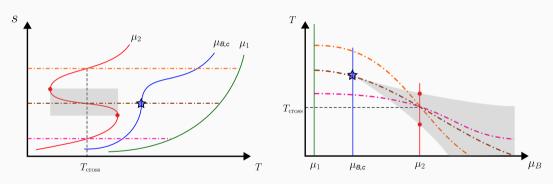
Adam, PP et al., 2507.13254

Large density QCD from the lattice

I. Large lattices in the continuum limit

Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

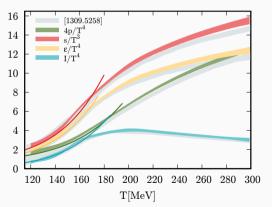

Extreme statistics on a $16^3 \times 8$ lattice

Yang-Lee edge singularities

Adam, PP et al., 2507.13254

Critical point location from entropy contours

Recently proposed to look at contours of constant entropy, and search for where they meet $\frac{1}{2}$ Shah et al., 2410.16206

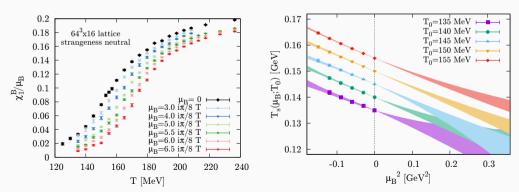


Through Taylor expansion, predicted a critical point at $T \sim 100$ MeV, $\mu_B \sim 600$ MeV

Critical point location from entropy contours

Full quantitative analysis with same method, but:

- analytical continuation from imaginary μ_B
- new equation of state at $\mu_B = 0$ with 2x better precision



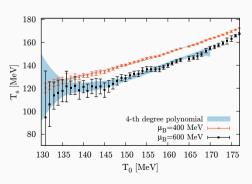
and different goal: try to exclude the CP somewhere in the phase diagram

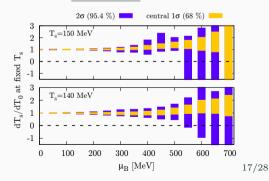
Our entropy contours

We generalized the approach and employed new data. Starting from baryon density at imaginary μ_B , obtain the entropy entropy at imaginary μ_B (total 16x systematics here)

$$s(T, \mu_B) = s(T, \mu_B = 0) + \int_0^{\mu_B} d\mu_B' \frac{\partial n_B(T, \mu_B')}{\partial T}$$

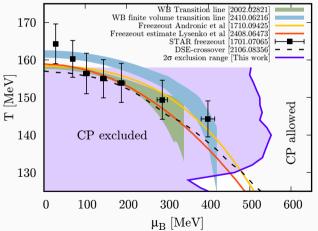
The points (right) are where the entropy has the same exact value (color-by-color)


16/28


Our entropy contours

Now we extrapolate $T_s(\mu_B, T_0)$, i.e. the temperature at which the entropy has the value it has at $T_0, \mu_B = 0$. We use two functional forms:

$$T_s(\mu_B^2, T_0) = \frac{T_0 + a\mu_B^2}{1 + b\mu_B^2}$$
 $T_s(\mu_B^2, T_0) = T_0 + a\mu_B^2 + b\mu_B^4$


If there is a critical point, T_s is non-monotonic above $\mu_B > \mu_{BC}$, so we look for the smallest values of the derivative at 1σ and 2σ levels (total 48x systematics per μ_B value)

The exclusion region

This gives us indication of where the derivative is compatible with 0 at the 1σ and 2σ levels, temperature by temperature $\rightarrow 2\sigma$ exclusion region

This is the first rigorous exclusion range from lattice QCD.

Large density QCD from the lattice

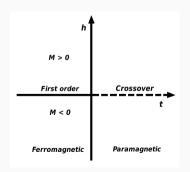
Large lattices in the continuum limit

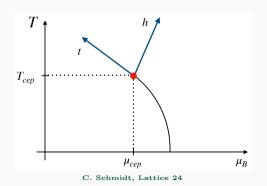
Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

II. Extreme statistics on a $16^3 \times 8$ lattice

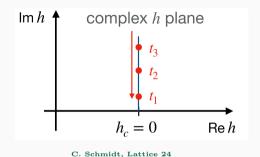
Yang-Lee edge singularities


Adam, PP et al., 2507.13254


Critical point and universality

In the Ising model, scaling fields are the reduced temperature $t = \frac{T - T_c}{T_c}$ and the magnetic field h. Universality implies they can be mapped onto QCD coordinates as:

$$t = A_t \Delta T + B_t \Delta \mu_B$$
$$h = A_h \Delta T + B_h \Delta \mu_B$$


with
$$\Delta T = T - T_c$$
, $\Delta \mu_B = \mu_B - \mu_{BC}$.

Critical point: Yang-Lee edge singularities

- The partition function of a thermodynamic system has in general complex zeroes called Lee- Yang zeroes
- When the critical point is approached, these zeroes approach the real (μ_B) axis
- Zeroes of \mathcal{Z} are singularities of the free energy $f \sim \log \mathcal{Z}$, and they accumulate at the so-called Yang-Lee edge (YLE) singularities

• In the vicinity of a critical point, the scaling variable $z = t/h^{\beta\delta}$ is the only "coordinate", and the YLE are universally located at:

$$z_c = |z_c| \exp\left(\frac{i\pi}{2\beta\delta}\right)$$

• In QCD this translates to expected scaling forms for the real and imaginary parts:

$$\operatorname{Re}\Delta\mu_B = \mu_{BC} + c_1\Delta T \ (+c_2\Delta T^2)$$
 and $\operatorname{Im}\Delta\mu_B = c_3\Delta T^{\beta\delta}$

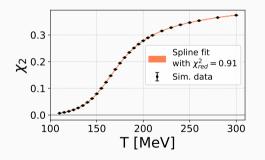
Critical point: Yang-Lee edge singularities

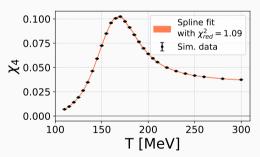
So, the idea is:

- somehow determine the complex locations of the YLE
- use the expected scaling to find where $\text{Im}\Delta\mu_B=0$, i.e. where the critical point is

Our setup:

- Single $16^3 \times 8$ lattice, huge statistics ($\mathcal{O}(10^6)$ at each T = 110 300 MeV)
- $N_f = 2 + 1$ flavours of **physical quark masses**
- Our recent 4HEX action has small discretization effects (i.e., $N_{\tau} = 8$ is not that small)

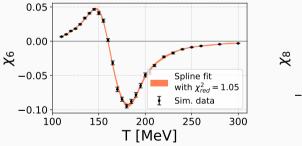

Important caveats: (due to prohibitive cost)

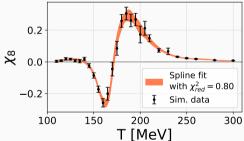

- No continuum limit, as only $N_{\tau} = 8$ lattices were used
- No infinite volume limit, nor a finite volume scaling analysis
- Truncated Taylor series will affect the location of the YLE singularities
- The extrapolation to T_{CEP} covers a large portion of the phase diagram

Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

$$\chi_n^B(T) = \left. \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} \right|_{\mu_B = 0}$$

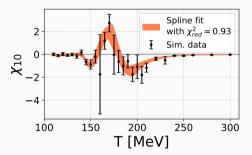



The extreme statistics is reflected in tiny errors, unprecedented precision

Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

$$\chi_n^B(T) = \left. \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} \right|_{\mu_B = 0}$$



The extreme statistics is reflected in tiny errors, unprecedented precision

Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

$$\chi_n^B(T) = \left. \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} \right|_{\mu_B=0}$$

The extreme statistics is reflected in tiny errors, unprecedented precision

Systematics

We model the pressure with a functional form allowing for singularities, retaining the known symmetries (charge conjugation $\mu_B \leftrightarrow -\mu_B$ and Roberge-Weiss periodicity)

• For each T, we use a 2/2 Padé in $\cosh(\mu_B) - 1$, fitted to our χ_n^B coefficients:

$$F(\mu_B) = \frac{a(\cosh(\mu_B) - 1)}{1 + c(\cosh(\mu_B) - 1) + d(\cosh(\mu_B) - 1)^2}$$

Systematics # 1: repeat the procedure for related quanties (χ_1^B, χ_2^B) , also singular!

• Universality fixes the approach to the critical point:

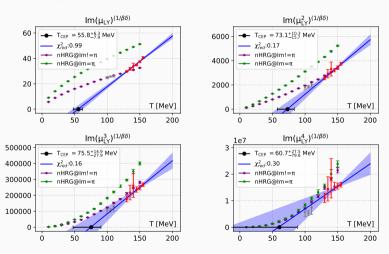
$$(\operatorname{Im}\mu_{LY})^{1/\beta\delta} = c_3(T - T_c)$$

Systematics # 2: but other asymptotically equivalent ansätze are allowed:

$$(\operatorname{Im}\mu_{LY}^2)^{1/\beta\delta} \sim (\operatorname{Im}\mu_{LY}^3)^{1/\beta\delta} \sim (\operatorname{Im}\mu_{LY}^4)^{1/\beta\delta}$$

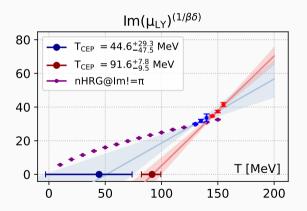
• The range where the ansätze hold is not known a priori (non universal)

Systematics # 3: vary the fit range in T


Systematics #1, different observables (x3)

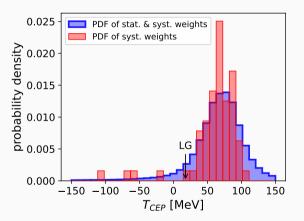
Estimates for the LYE singularities from p (χ_0), χ_1 and χ_2

Systematics #2, different ansätze for T dependence (x4)


Different ansätze all give good fits

but different results!

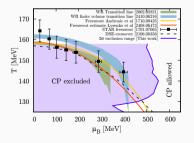
Systematics #3, fit range (x6)

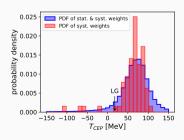

Since we can't know $a \ priori$ where the scaling ansatz is valid, fits with different T ranges must be treated equally

The dependence on the fit range is substantial.

Systematics: wrap up

Putting together the $3 \times 4 \times 6 = 72$ analyses:

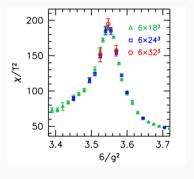

We find an 84% probability that the critical point is at T < 103 MeV or does not exist.


Summary

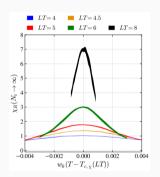
Is there a critical point in the QCD phase diagram? Can lattice say something?

YES! (it can say something)

- i. Critical point exclusion range: first ever, admittedly not very stringent yet, but the method is systematically improvable
- ii. Yang-Lee edge singularities offer an intriguing chance, but the numerics suggest to be very cautious



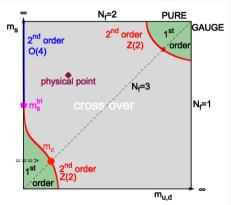
BACKUP


The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of the transition

Left: physical masses

Right: infinite masses (pure gauge)

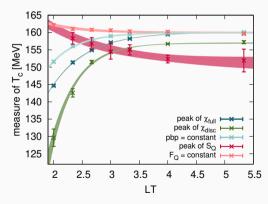


- For a crossover (left), the peak height is independent of the volume
- For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi, PP et al., PRD 105 (2022)

The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition changes

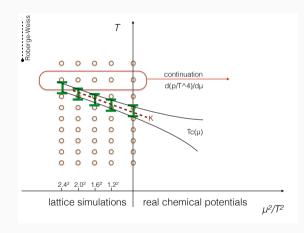


- At the physical point $m_s/m_{ud} \simeq 27$, the transition is a smooth crossover!
- In the heavy-quark limit (pure gauge), the transition is first order

Measures of T_c vs V

Combining the estimates of T_c from different observables and volumes we can draw some conclusions:

- Chiral transition T_c estimates have larger V-dependence and decrease with the volume
- Deconfinement T_c estimates have milder V-dependence and increase with the volume
- The spread is ~ 10 MeV for LT > 2.5
- Clear ordering $T_c^{\chi} < T_c^{S_Q}$ appears above LT = 3

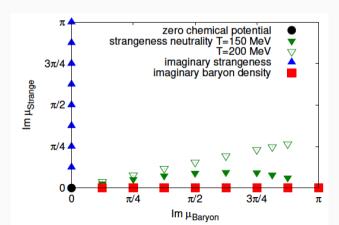


This suggests that studies of T_c can be performed on lattice with smaller volumes based on deconfinement-related observables

Simulations at imaginary chemical potential

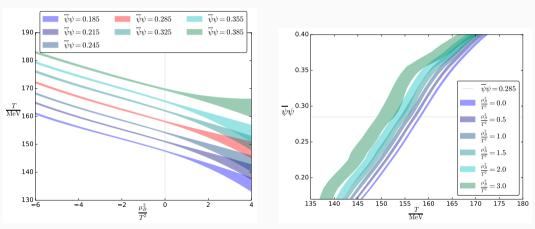
- While for real chemical potential $(\mu^2 > 0)$ det M(U) is complex, for **imaginary** chemical potential $(\mu^2 < 0)$ det M(U) is real
- We perform simulations at imaginary chemical potentials:

$$\hat{\mu}_B = i \frac{j\pi}{8} \quad j = 0, 1, 2, \dots$$


We then analytically continue to $\mu^2 > 0$ by means of suitable extrapolation schemes

Simulations at imaginary chemical potential

Strangeness neutrality (or not)


Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

$$\langle n_S \rangle = 0$$
 $\langle n_Q \rangle = 0.4 \langle n_B \rangle$ or $\mu_Q = \mu_S = 0$

The width of the transition at finite chemical potential

We can extrapolate our results for $\langle \bar{\psi}\psi \rangle$ along contours of constant $\langle \bar{\psi}\psi \rangle$ (left) or constant μ_B/T (right)

The extrapolated $\langle \bar{\psi}\psi \rangle$ at finite μ_B is quite precise for $\mu_B < 3T$