Contribution ID: 25 Type: not specified

Assessing lattice QCD charm space diffusion coefficient and thermalization time by mean of D meson observables at LHC

Thursday 2 October 2025 15:00 (20 minutes)

A key objective in heavy-flavour studies is to quantify the interaction between heavy quarks (HQs) and the quark-gluon plasma (QGP) via the spatial diffusion coefficient $D_s(T)$. Recent lattice QCD results with dynamical fermions suggest a notably low value of $2\pi TD_s\approx 1$ at T_c for charm quarks—much lower than quenched QCD and phenomenological models, which predict $2\pi TD_s\approx 3.5-5$. This raises questions about compatibility with experimental observables like R_{AA} , and flow coefficients v_2, v_3 for D mesons. Using an event-by-event Langevin approach, we show that such low D_s values match experimental data only if the drag coefficient $A(p)=\tau_{th}^{-1}(p)$ has strong momentum dependence while a momentum-independent thermalization time fails to reproduce observed behavior. Moreover, a short $\tau_{th}\approx 1.5fm/c$ reduces sensitivity to initial charm-quark momentum up to $p_T\approx M_c$, hinting at a universal dynamical attractor.

Authors: SAMBATARO, Maria Lucia (Università di Catania - LNS (INFN)); MINISSALE, Vincenzo (Università degli Studi di Catania-INFN sezione Catania); PLUMARI, Salvatore (Università di Catania - LNS (INFN)); GRECO, Vincenzo (Università di Catania - LNS (INFN))

Presenter: SAMBATARO, Maria Lucia (Università di Catania - LNS (INFN))

Session Classification: Short contributions (IV)