The 3-dimensional map of the proton

Simone Rodini

Hamburg-Regensburg-Tübingen

Pavia U.

INFN Pavia

Madrid U.

Argonne NL

Quantum Chromodynamics

What is QCD, why it is relevant

$$\mathcal{L} = \overline{\psi} \left(i \partial \hspace{-0.1cm}/ - g A - m \right) \psi - \frac{F^2}{4}$$

From PDG:

"Neither quarks nor gluons are observed as free particles"

Quantum Chromodynamics

We have a problem

$$\frac{\partial \log a_s}{d \log \mu} = \beta(a_s(\mu))$$

$$a_s(\mu) = \frac{a_s(\mu_0)}{1 - a_s(\mu_0)\beta_0 \log(\mu/\mu_0)} + \dots$$

Quantum Chromodynamics

We cannot compute hadronic properties in perturbation theory

So, what CAN we do?

Simulate the full theory

Extract hadronic properties from experimental data

Lattice-QCD: non-perturbative methods

SR, A. Vladimirov JHEP 09 (2023) 117

Disclaimer: not only approach!

$$\Omega(\ell v + \boldsymbol{b}) = C_1^2 \Psi(\boldsymbol{b}) f(\ell, \boldsymbol{b})$$

Perturbative calculable

Transverse Momentum distribution

Unknown non-perturbative function

Semi-Inclusive Deep Inelastic Scattering

Semi-Inclusive Deep Inelastic Scattering

Factorization Theorem

Hard coefficient

Factorization Theorem

$$|x|C_1(\mu^2,Q^2)|^2 \sum_i e_i^2 \int \frac{bdb}{2\pi} (bM)^n J_n\left(\frac{b|P_{h\perp|}}{z}\right) f_i(x,b;\mu,\zeta) D_i(z,b;\mu,\bar{\zeta})$$

Quark Pol.

			•
		1	
Ę			7
	}		
		١	

	U	H	\mathbf{T}
U	f_1 (tw2)		$h_1^{\perp} \text{ (tw3)}$
L		$g_1 \text{ (tw2)}$	$h_{1L}^{\perp} \text{ (tw2 \& tw3)}$
${ m T}$	$f_{1T}^{\perp} \text{ (tw3)}$	g_{1T} (tw2 & tw3)	$h_1 \text{ (tw2)}$
1			$h_{1T}^{\perp} \text{ (tw3 \& tw4)}$

Properties: Evolution

$$f_i(x, b; \mu, \zeta) = \int \frac{dz}{4\pi} e^{-ixz} \langle p|\bar{\psi}((z/p_+), b)\Gamma W \psi(0)|p\rangle$$

Properties: Evolution

$$\mu^{2} \frac{\partial}{\partial \mu^{2}} f = \begin{cases} \gamma_{F}(\mu^{2}, \zeta) \\ 2 \end{cases} f$$

$$\zeta \frac{\partial}{\partial \zeta} f = -\mathcal{D}(\mu^{2}, b) f$$

Perturbatively calculable

Collins-Soper kernel
Has non-perturbative part

Integrability condition

$$2\mu^2 \frac{\partial}{\partial \mu^2} \mathcal{D}(\mu^2, b) = \Gamma_{\text{cusp}}(\mu^2, \zeta) = -\zeta \frac{\partial}{\partial \zeta} \gamma_F$$

Properties: Evolution

Path-independence ⇒ simple solution

$$f(\mu^2, \zeta) = f(\mu_i^2, \zeta_i) \left(\frac{\zeta_f}{\zeta_i}\right)^{-\mathcal{D}(\mu_i^2, b)} \exp\left[\int_{\mu_i^2}^{\mu^2} \gamma_F(\mu^2, \zeta_f) \frac{d\mu}{\mu}\right]$$

So, what now?

Properties: Matching and f_{NP}

$$f(x, \boldsymbol{b}) = \int \frac{d\zeta}{4\pi} e^{-ix\zeta} \langle p|\bar{\psi}(\zeta, \boldsymbol{b})\Gamma W\psi(0)|p\rangle \xrightarrow[\boldsymbol{b}\to 0]{}?$$

Operator Product Expansion

$$F(x,b) = C(x,\ln(\mu b)) \otimes f(x,\mu) + \mathcal{O}(b^2)$$

	U	Н	T
U	$f_1 \text{ (tw2)}$		$h_1^{\perp} \text{ (tw3)}$
$oxed{L}$		$g_1 \text{ (tw2)}$	$h_{1L}^{\perp} \text{ (tw2 \& tw3)}$
T	$\int_{1T}^{\perp} (\text{tw}3)$	g_{1T} (tw2 & tw3)	$\begin{array}{c} h_1 \text{ (tw2)} \\ h_{1T}^{\perp} \text{ (tw3 \& tw4)} \end{array}$

Properties: Matching and f_{NP}

$$F(x,b) = C(x, \ln(\mu b)) \otimes f(x,\mu) + \mathcal{O}(b^2)$$

Potentially large logs $\mu \ ! \propto 1/b$

$$\mu ! \propto 1/b$$

When b is large, scale is small \rightarrow non-perturbative region

$$f(b, \mu_f^2, \zeta_f^2) = \left(\frac{\zeta_f}{\mu_*^2}\right)^{-\mathcal{D}_{\text{OPE}}(\mu_*^2, b^*)} \exp\left(\int_{\mu_*}^{\mu_f} \frac{d\mu}{\mu} \gamma_F(\mu^2, \zeta_f)\right) f_{NP}(b, b^*, \mu_*^2) f_{\text{OPE}}(b^*, \mu_*^2)$$

Two selected cases

The unpolarized distribution

The Sivers distribution

Quark densities

Coefficient know @ NLO

Coefficient know @ N3LO

Quark Spin-Orbit correlations

Usual unpolarized PDFs as input

Used to extract twist-3 PDFs

The case of Unpolarized Distribution

Extractions uses combination of SIDIS and Drell-Yan

The case of Unpolarized Distribution

Results from Moos et al, 2503.11201

The case of Unpolarized Distribution

Drell-Yan only, Neural Network for more realistic uncertainties

NN fit and Lattice Collins-Soper Kernel

$N_{ m dat}$	$\langle \overline{\chi}^2 angle$		
	NN	NN rew	NN+lattice
233	1.03	1.02	1.04
7	1.01	1.03	1.02
71	0.86	0.86	0.88
21	1.09	1.06	1.11
78	0.39	0.39	0.39
72	1.32	1.35	1.34
6			0.56
7			0.18
8			0.20
503	0.95	0.95	0.95
	233 7 71 21 78 72 6 7 8	NN 233 1.03 7 1.01 71 0.86 21 1.09 78 0.39 72 1.32 6 / 7 / 8 /	NN NN rew 233 1.03 1.02 7 1.01 1.03 71 0.86 0.86 21 1.09 1.06 78 0.39 0.39 72 1.32 1.35 6 / 7 / 8 /

The Sivers/twist-3 case

Much more challenging!

We need combined fit of TMD and collinear distributions

$$f_{1T,q}^{\perp}(x,b;\mu,\zeta) = \pm \pi T_{q}(-x,0,x) \pm \pi a_{s} \left\{ C_{F} \left(-\mathbf{L}_{b}^{2} + 2\mathbf{L}_{b}\mathbf{l}_{\zeta} + 3\mathbf{L}_{b} - \frac{\pi^{2}}{6} \right) T_{q}(-x,0,x) \right.$$

$$\left. - 2\mathbf{L}_{b} \mathbb{H} \otimes T_{q}(-x,0,x) + \delta \mathbf{f}_{1T}^{\perp}(x) \right\} + \mathcal{O}(a_{s}^{2},b^{2})$$

$$\delta \mathbf{f}_{1T}^{\perp}(x) = \int_{-1}^{1} dy \int_{0}^{1} d\alpha \delta(x - \alpha y) \left[\left(C_{F} - \frac{C_{A}}{2} \right) 2\bar{\alpha} T_{q}(-y,0,y) + \frac{3\alpha\bar{\alpha}}{2} \frac{G_{+}(-y,0,y) + G_{-}(-y,0,y)}{y} \right]$$

The Sivers/twist-3 case

The Sivers/twist-3 case

Twist-3 PDFs

Conclusions

Transverse-momentum distributions as the 3-dimensional momentum map of the proton

Lattice-QCD and experimental data synergies

Moving beyond the totally unpolarized sector