#### D. Boccanfuso, F. Cirotto, A. D'Avanzo, C. Di Fraia

# **GEANT4 SIMULATION REPORT**

FCC Napoli weekly meeting, 16 May 2024

## **BSO LEAKAGE EFFECTS STUDY**

- > Potential outcome for future test beam is a lone BSO matrix without PWO encasing
  - Concern for energy leakage
- Plan: study energy resolution in a 42 x 42 x 150 mm<sup>3</sup> crystal with e<sup>+</sup> beam at several nominal energies
  - $\succ$  E  $\rightarrow$  [1, 2, 5, 10, 20, 50, 100] GeV



### Fraction of deposited energy



### **Energy resolution**

2 regions, low energy and high energy



## **First region: new simulation**

> New simulation: Infinite crystal approximation in the trasversal plane, length is still 16 cm



### **First region: new simulation**

> Lower values at low energies now, it proves the effect is related to **lateral leakage** 



## Second region: bibliography

- > High energy trend could be explained by this source
  - Related to longitudinal leakage



#### **Energy Resolution**



#### Shower leakage:

Fluctuations due to finite size of calorimeter; shower not fully contained ...

Lateral leakage: limited influence Longitudinal leakage: strong influence

Typical expression when including leakage effects:

$$\frac{\sigma_E}{E} \propto \left(\frac{\sigma_E}{E}\right)_{f=0} \cdot \left[1 + 2f\sqrt{E}\right]$$
[f: average fraction of shower leakage]

Remark: other parameterizations exist ...



### **<u>Closer to the idealized setup results (no corners)</u>**





# BACKUP

### **Closer to the idealized setup results (with corners)**













