

Partecipazione di Pisa all'esperimento ALICE

June 19, 2025 F. Forti, INFN and Univ. Pisa

Outline

- 1. ALICE Experiment
- 2. ALICE Upgrade Program
- 3. Physics perspectives
- 4. Technology Connection
- 5. Pisa group participation
- 6. 2026 activity plan
- 7. Synergies and future perspectives

Contributed slides from A.Dainese, G.Contin, P. La Rocca, L.Corona, F.Jonas

1. ALICE Experiment

- One of the 4 large experiments at LHC (+ATLAS, CMS, LHCb)
- Mainly devoted to Quark-Gluon Plasma study in heavy-ion collisions (Pb)
- Rich program in p-p collisions
- High performance detector
 - Very high multiplicity
 - Lower rate than ATLAS & CMS
 - Lower momentum
 - Also low pT physics
 - Extreme pointing resolution
 - PID over large pT range

Fig. 3 The evolution of a heavy-ion collision at LHC energies

ALICE Detector

Major (expected) open questions after the 2020s

- Initial state of heavy-ion collisions: is the gluon density reaching saturation at small x?
- \rightarrow Direct probes of small-x initial gluon PDF: forward-rapidity photons
- Nature of interactions with the QGP of highly energetic quarks and gluons
- To what extent do quarks of different mass reach thermal equilibrium ?
- What are the mechanisms of hadron formation in QCD?
- \rightarrow Systematic measurement of (multi-)charm hadrons
- QGP temperature throughout its temporal evolution
- What are the mechanisms of chiral symmetry restoration in the QGP?
- \rightarrow Precision measurements of dileptons
- QCD chiral phase structure \rightarrow fluctuations of conserved charges
- Nature of exotic charm hadrons → charm hadron-hadron correlations

INFr

➡ Novel and innovative detector concept

- Compact and lightweight all-pixel tracker
- Retractable vertex detector
- Extensive particle identification TOF, RICH, MID
- Large acceptance $|\eta| < 4$
- Superconducting solenoid magnet B= 2 T
- Continuous read-out and online processing

June 19, 2025

Extreme pointing resolution

INFN

C

3. Physics Perspectives

• Access to temperature as function of time

- → high-precision di-electron mass spectra, p_{T} dependence, elliptic flow
- Understanding thermalisation in the QGP
 - direct access to charm diffusion: D-Dbar azimuthal correlations
 - degree of thermalisation of beauty: high-precision beauty measurements
 - approach to chemical equilibrium: multi-charm hadrons
- Fundamental aspects of the QCD phase transition
- ➡ net-baryon and net-charm fluctuations
- mechanism of chiral symmetry restoration in the QGP: di-electron mass spectrum
- Laboratory for hadron physics
 - hadron-hadron interaction potentials
 - explore nature of exotic hadrons (tetraquarks)

ALICE 3 Lol, CERN-LHCC-2022-009

June 19, 2025

10

Access to temperature as function of time

→ high-precision di-electron mass spectra, p_{T} dependence, elliptic flow

Understanding thermalisation in the QGP

- direct access to charm diffusion: D-Dbar azimuthal correlations
- degree of thermalisation of beauty: high-precision beauty measurements
- approach to chemical equilibrium: multi-charm hadrons
- Fundamental aspects of the QCD phase transition
- → net-baryon and net-charm fluctuations
- mechanism of chiral symmetry restoration in the QGP: di-electron mass spectrum
- Laboratory for hadron physics
 - hadron-hadron interaction potentials
 - explore nature of exotic hadrons (tetraquarks)

ALICE 3 LoI, CERN-LHCC-2022-009

Access to temperature as function of time

- → high-precision di-electron mass spectra, p_{T} dependence, elliptic flow
- Understanding thermalisation in the QGP
 - direct access to charm diffusion: D-Dbar azimuthal correlations
 - degree of thermalisation of beauty: high-precision beauty measurements
 - approach to chemical equilibrium: multi-charm hadrons
- Fundamental aspects of the QCD phase transition
- → net-baryon and net-charm fluctuations
- mechanism of chiral symmetry restoration in the QGP: di-electron mass spectrum
- Laboratory for hadron physics
 - hadron-hadron interaction potentials
 - explore nature of exotic hadrons (tetraquarks)

ALICE 3 LoI, CERN-LHCC-2022-009

Access to temperature as function of time

→ high-precision di-electron mass spectra, p_{T} dependence, elliptic flow

• Understanding thermalisation in the QGP

- direct access to charm diffusion: D-Dbar azimuthal correlations
- degree of thermalisation of beauty: high-precision beauty measurements
- → approach to chemical equilibrium: multi-charm hadrons
- Fundamental aspects of the QCD phase transition
- → net-baryon and net-charm fluctuations
- mechanism of chiral symmetry restoration in the QGP: di-electron mass spectrum
- Laboratory for hadron physics
 - hadron-hadron interaction potentials
 - explore nature of exotic hadrons (tetraquarks)

Dark Matter searches at ALICE

ALICE has a unique potential to contribute to dark matter (DM) searches

- Axion-like particles (ALPs) [1]
 - Promising DM candidates or DM mediators
 - In most scenarios ALPs naturally couple to photons with coupling $g_{a\gamma} = 1/\Lambda_a$ [TeV⁻¹]
 - Production and decay rates fully defined in the $(m_a, g_{a\gamma})$ plane
- Dark photons [2]
 - Naturally introduced extending the Standard Model (SM) with kinetic-mixing mechanism
 - Introduces a coupling to SM partcles
 - If dark photon is the lighter dark matter state, it decays to SM particles
 - Any process in which a virtual photon couples to lepton pairs or hadrons can be used to search for dark photons
- Measurement of decay rates of b barions to antinuclei can provide insights into DM models [3]

[1] M. Bauer et al., <u>JHEP 12 044 (2017)</u>

[2] B. Holdom, Phys. Lett. B 166, p. 196 (1986)

[3] M. W. Winkler et al., Phys. Rev. Lett. 126 no. 10, 101101 (2021)

Axion-like particles (a)

•ALICE 3 unique sensitivity in 50 MeV < m_a < 5 GeV, $g_{a\gamma}$ < 1 TeV⁻¹

 \rightarrow CMS and ATLAS limited accessibility to small m_a

•Light-by-light scattering measurement $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ in **ultraperipheral** collisions of *Pb* ions

- \rightarrow Huge Z^4 enhancement for the $\gamma\gamma$ rate w.r.t pp
- →Clean enviroment for the search of new particles

•Search for a narrow peak over a smooth background in $m_{\gamma\gamma}$

Dark photons (γ'/Z')

•ALICE 3 possible channels

→Meson decays such as π^0 , η , η' , ϕ Dalitz decays, D^{*0} decays, radiative J/ψ and Υ decays

Ex. $\pi^0 \rightarrow \gamma \gamma', \gamma' \rightarrow e^+ e^-$

→Drell-Yan pairs, final-state radiation, displaced searches

→Resonance in thermally-produced dilepton spectrum from quark-gluon plasma $qq \rightarrow e^+e^-$, $qg \rightarrow qe^+e^-$, $qq \rightarrow ge^+e^-$

Access to $m_{\gamma'} > 1 \text{ GeV}$

ALICE 3 requirements

→Good electron ID capability for a wide momentum range

→High-rate capability and in-bunch pileup separation, and good vertexing

D. d'Enterria et al., <u>J. Phys. G: Nucl. Part. Phys. 50 050501 (2023)</u>

b-quark decays into ³He

Detection of cosmic-ray antinuclei such as ³He

→One of the most promising signatures of the existence of weakly-interactive mass particles (WIMPs) [1]

→WIMPs are promising candidate for DM

•AMS-02 reported a preliminary evidence of O(10) ³He events [2]

→Possible explanation: the **production of** Λ^{0}_{b} **<u>bary</u>ons in DM annihilation**, and their subsequent decay into ³He nuclei [3]

 $\ensuremath{\scriptstyle \rightarrow}$ Decays rates of $\overline{\Lambda^0{}_b}$ baryons are not experimentally measured

Crucial to interpret AMS-02 data

.ALICE 3 ideal experiment for $\overline{\Lambda^{0_{b}}} \rightarrow {}^{3}He + X$

 \neg Large *b* production cross-section at LHC energes

→Excellent identification capabilities for nuclei

[1] F. Donato et al., <u>Phys. Rev. D 62 043003 (2000)</u>
[2] S. Ting, <u>Press Conference at CERN (2016)</u>,

[3] M. W. Winkler et al., Phys. Rev. Lett. 126 no. 10, 101101 (2021)

June 19, 2025

4. Technology Connection

CMOS MAPS are the core of low mass trackers

- Tracking and vertexing requirements at HI experiments very similar to B-factories
 - Requirements: particle identification, precise tracking and vertexing at low p_{T}
 - Pioneering developments for:
 - High-res. time of flight (MRPC), Silicon drift det., continuous readout, tracking on GPUs
 - Silicon pixel detectors, in particular low-material sensors (first hybrid, now monolithic)

My personal favourites: pixel sensors developed for CERN HI experiments

History of Silicon Trackers in ALICE

- **ITS1**: three silicon technologies •
 - Hybrid **pixels**
 - **Drift** chambers
 - Micro-strips
- Operated for 10 years in ALICE •
 - Essential ingredient for its physics output (secondary vertex reconstruction)

- **ITS2**: a large-scale **MAPS** detector •
 - Monolithic Active Pixel Sensors
 - 10 m² active area •
- Currently taking data •

- **ITS3**: wafer-scale, bent silicon
 - Replacing the ITS2 innermost layers
 - Novel detector technology
- Fully approved project
- Final sensor submission ongoing

INFN Leadership in all Projects from the start

ITS2: from R&D to detector implementation

ITS2 specifications

7 layers: all MAPS 10 m², 24k chips, 12.5 \times 10⁹ Pixels Innermost layer: radial distance: 23 mm material: X/X₀= 0.35% pitch: 29 \times 27 μ m² Rate capability: 100 kHz (Pb-Pb)

ITS2 expected performance

pointing resolutions of 15 μ m (in r and z) at p_T =1GeV/c tracking efficiencies > 90% for particles with p_T >200 MeV/c

- ITS2: the largest detector based on MAPS technology
 - Sensor (ALPIDE) and apparatus fully developed within ALICE
 - R&D program started ~14 years ago
 - Construction involved > 10 institutes
 - Currently taking data in ALICE

INFN BA, BS/PV, CA, CT, LNF, PD, TO, TS

• Safe resource investment for concrete high-quality results

ITS3 recent highlights

ITS3 Engineering Model 3

- 50μ m half-layer sensors from ER1 pad wafers
- Final carbon foam components
- Integration & air cooling qualified

FPC assembly design for MOSAIX

• One specific FPC per layer

FPC A side

• Full size & fully functional

O lait

ALICE 3 Inner Tracker: Vertex Detector (Iris)

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- Unprecedented pointing resolution: radius and material of first layer crucial
- Retractable structure inside the beam pipe secondary vacuum
- First detection layer at 5 mm from the interaction point

INFN R&D on

ALICE 3 Inner Tracker: Vertex Detector (Iris)

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- Unprecedented pointing resolution: radius and material of first layer crucial
- Retractable structure inside the beam pipe secondary vacuum
- First detection layer at 5 mm from the interaction point

INFN R&D on

ALICE 3 Middle Layers and Outer Tracker

60 m² of silicon

- 8 barrel layers (6.5 cm < radius < 80 cm*)
- 2 x 9 end-cap disks *
- Material budget: 1% X₀/layer at the most
- Position resolution: 10 μm (~ 50 μm pixel pitch)
- Low power consumption < 20 mW/cm²
- 100 ns time resolution to mitigate pile-up
- Common layout in the ALICE 3 baseline

* = under revision

Main R&D challenges:

- Module design for industrialized production
- Low power consumption while preserving timing performance

A Large Ion Collider Experiment	_ Requirements are very similar to Belle II Upgrade pixels					
Requirements						
	1	Vertex Detector	Middle Layers (Outer Tracker	ITS3	
Position resolution (µm)		2.5	10		5	
Pixel size (µm²)		O(10 x 10)	O(50)	(50)	O(20 x 20)	
Time resolution (ns RMS)		100	10	0	100* / O(1000)	
In-pixel hit rate (Hz)		94	42 (barrel) / 12 (foward)	1 (barrel) / 16 (forward)	54	
Fake-hit rate (/ pixel / event)			<10-	7		
Power consumption (mW / cm ²)		70	20		35	
Particle hit density (MHz / cm²)		94	0.6 (barrel / forward)	0.06 (barrel) 0.6 (forward	8 5	
Non-Ionising Energy Loss (1 MeV r	n _{eq} / cm²)	2 x 10 ¹⁵	6 x 10¹³ (barrel) 6 x 10 ¹³ (forward)	3 x 10 ¹³ (barrel) 6 x 10 ¹³ (forward)	3 V 1111Z	
Total Ionising Dose (Mrad)		11	3 (barrel) / 3 (forward)	0.5 (barrel) / 3 (forward)	0.3	

- VD and Middle Layers need different trade off in terms of spatial resolution vs power consumption
- Outer Tracker requirements driven by the forward disks ⇒ similar to Middle Layers
- Radiation load updated based on FLUKA simulations (work-in-progress) [1]

5. Pisa Group Participation

Pisa Group Participation

- Several Pisa Belle II group members will join ALICE as associate members with low percentage
- Initial driver is the technology connection between ALICE3 and Belle II upgrade
 - CMOS MAPS sensors
 - Mechanical structures and cooling
 - ITS3 is already in construction phase and "ballistic"
 - But possibility to provide technical help if needed
- Start exploring also the physics perspectives matching our expertise
 - Dark sector particle searches
 - Heavy flavour physics and interactions

Personnel

- Total 0.6-0.7 FTE
- Sigla aperta in dotazioni 3

Name	Position	Percent on ALICE	Note
Stefano Bettarini	P.A.	10%	90% Belle II
Giulia Casarosa	P.A.	10%	90% Belle II
Luigi Corona	Ass.	10%	90% Belle II
Maurizio Massa	Eng.	5-10%	Depends on global optimization
Andrea Moggi	Eng.	5-10%	Depends on global optimization
Francesco Forti	P.O.	10%	80% Belle II 10 % RD-FCC
Giuliana Rizzo	P.A.	10%	90% Belle II

INFN

Status

- Discussion with INFN groups and ALICE management
- Application letter submitted to ALICE. Scope:
 - Characterization of test structures coming from the ERx submissions
 - Collaboration on the mechanical design of the modules for ALICE3
 - In addition, we plan to start exploring some areas of the ALICE physics program that best match our expertise on heavy flavour physics and dark matter searches.
- Discussed in the Management Board
- Approval expected at the Collaboration Board in July

6. 2026 Activity

Sensors

• Qualification of test structures for ALICE3 tracking system

- Concentrate on Analog Pixel Test Structures
- Various design and process splits

TEST SYSTEM FOR MLR1 and ER2 CHIPLETS

MLR1: First submission of MAPS in 65 nm. Used to validate the 65 nm technology (2021-2023). Three types of Test Structures (TS) characterized: APTS (Analog Pixel Test Structures), DPTS (Digital Pixel Test Structures), CE65 (Circuit Exploratoire 65 nm).

APTS: 4×4 matrix, 10-25 μ m pixel, w/o process modification, analog readout

DPTS: 32×32 matrix, 15 µm pixel, modified with gaps, digital readout, time-encoded signal amplitude and position

CE65: Rolling shutter readout, 3 submatrices, both amplifier and source-follower output buffers.

<u>ER2</u>: Production of MOSAIX, babyMOSAIX and chiplets. List of chiplets:

Mechanics

• Collaboration in the design of the mechanical structures for the intermediate layers for ALICE3

Financial requests

• Laboratory setup for characterization of test structures

- Dedicated power supply + computer: 3k (2500+IVA0
- Proximity board and carrier: 2k
- Travel
 - Visit to testing sites: 3k
 - Participation in ALICE Meetings: 2-3k (following algorithms)

7. Synergies and Future Perspectives

MAPS development

- Strong connection with Belle II upgrade VTX
 - OBELIX chip in final design stage connection with ALICE designers
- Connection with DRD3 project in preparation (Versatile MAPS)
 - Develop a versatile IC that can be programmed to fulfill the requirements of different experiments.
 - Could be used for Belle II Tracker, ALICE3 Outer Tracker, FCCee Tracker

	ALICE3 OT	Belle II trk	CBM trk	LHCb UT	FCCee trk
Position resolution	~10 µm	<15 µm	~10 µm	<10 µm	<10 μm
Pixel pitch (µm)	50	50	~30	50	50
Hit rate (MHz/cm ²)	0.05 to 2	<1	60/180	160	<10
Data rate (Gb/s)			8	20	
Time figure (ns)	100	~1	25	~1 (<25)	20 to 1000
Triggering	No	yes	no	no	?
Power (mW/cm ²)	~20	<50	~50	<100	~20?
TID (kGy)	50	10?	~10	2400	10?
NIEL	10 ¹⁴	10 ¹¹ ?	few 10 ¹⁴	3x10 ¹⁵	10 ¹¹ ?

Mechanics and assembly

- Strong connection between Belle II, ALICE3, FCCee
 - Stave mechanics
 - Cooling
 - Integration
 - Perspective on curved modules
- Lab Alte Tecnologie a great asset
 - Possible contributions to assembly and construction
 - Development of similar assembly tecniques
 - Optimized use of resources (people and equipment)

Nuclear Physics

- Pisa has a strong nuclear physics theory group
 - Kievsky, Marcucci, Bombaci, Viviani
 - An MoU is alread in place with ALICE: "Femtoscopy A Tool for Studies of Strong Interactions at the LHC".
- Intention to participate fully in the ALICE physics program
 - Dark sector searches
 - Heavy flavor
 - we have to study and learn.
- Last but not least: keep the CSN3 participation alive in Pisa.

