

ICARUS, and the Short-Baseline Neutrino (SBN) Program at Fermilab

Simone Donati, Università and INFN Pisa

June 19, 2025

The SBN Program at Fermilab

- Same Technology: Liquid Argon Time Projection Chamber (LArTPC)

- Same Source: Booster Neutrino Beam (BNB: 93.60% ν_{μ} /5.86% anti- ν_{μ} /0.52% ν_{e} and 700 MeV peak Energy)

- Near Detector (SBND, 110 m, taking data since 2024): Measure neutrinos before they oscillate, provide precise information on the initial beam composition and energy

- Far Detector (ICARUS, 600 m, taking data since 2022): Have non null oscillation probability

- Main goal: Search for sterile neutrinos, solve the sterile neutrino puzzle (+cross sections, BSM Searches)

- Two Neutrino Beams: BNB + NuMI (ICARUS only)

SBN @FNAL: L/E Optimization

Sterile neutrino sensitivity, 3 years (6.6x10²⁰ pot)

Combined ICARUS (FD) and SBND (ND) data analysis using the same LArTPC event imaging greatly reduces expected systematics

- Initial BNB beam composition and spectrum provided by SBND
- High $\nu_{\rm e}$ identification capability/NC background rejection provided by LArTPC

Unique capability to study neutrino appearance/disappearance simultaneously

‡ Fermilab

Neutrinos at the Main Injector (NuMI) Beam

- Excellent statistics to measure cross sections

Estimate of CC Events/6E20 pot: 332,000 ν_{μ} / 17,000 ν_{e}

- Neutrino energy spectrum from NuMI covers the first oscillation peak and has good coverage on the relevant phase space for DUNE
- Further exploitation of NuMI: rich BSM search program, Higgs portal scalar, v tridents, light Dark Matter, Heavy Neutral Leptons, and more.

Liquid Argon Time Projection Chambers

- From an idea of Carlo Rubbia (1977), LArTPCs are ideal detectors for v physics: they allow to have simultaneously an **energetic reconstruction** of the events and a **3D image** of v interactions

- Charged particles generate excited argon molecules that emit light
 - Fast component (τ < 2 ns): identify time of neutrino interaction (**Trigger**)
 - Slow component ($\tau \sim 2-3 \ \mu s$): energy measurement
- Charged particles ionize argon: 42,000 e⁻/MeV and the 500 V/cm Electric Field drifts the e⁻ (1.6 m/ms) towards the anode where wire planes are used to generate 2D images of charged particle tracks

ICARUS AT FERMILAB

- ICARUS T600: the first large scale LArTPC ever built with 760 tons of pure LAr, 470 tons active mass
- **2 cryostats** $(3.6 \times 3.9 \times 19.6 \text{ m}^3)$ with 2 TPCs each and a central cathode $(1.5 \text{ m drift}, E_D = 500 \text{V/cm})$
- **3 wire planes per TPC:** total of 54,000 wires at 0° , $\pm 60^\circ$, 3mm pitch to measure ionization signal
- 360 PMTs behind the wires to measure scintillation light and provide trigger (300 ps resolution)
- LAr/GAr purified by copper filters and molecular sieves for water absorption
- 2.85 m concrete overburden to suppress and external Cosmic Ray Tagger (CRT) to tag cosmic rays background
- After 3 yr physics run at LNGS and intensive overhaul at CERN, ICARUS was moved to Fermilab

Cosmic-ray background mitigation in ICARUS

- **ICARUS** exposed in a pit to cosmic rays: electrons produced by γ 's via Compton Scatt./Pair Prod. can mimic a genuine v_e CC event
- Cosmic muons entering ICARUS are identified in time/position by 4π CRT 1000 m² double-layer scintillation bars equipped with SiPMs surrounding the LArTPC

 Cosmic γ's and neutrons suppressed by 2.85 m concrete overburden installed above the CRT

ICARUS Operations and Data Collection at Fermilab

ICARUS data taking for physics started in June 2022

- **3 physics runs completed** + Run 4 ongoing since December 2024
- Steady data taking, excellent stability at BNB rates > 4 Hz, > 90% live time
- Highly pure liquid argon: free electron
 lifetime 7-8 ms -> full track detection
 efficiency in the 1.5 m drift (1 ms)
- Trigger: light signal registered by 4 PMT pairs in a 6 m detector slice in coincidence with BNB (1.5 μs), NuMI (9.5 μs) beams

Collected PoT	BNB (FHC) positive focusing	NuMI (FHC) positive focusing	NuMI (RHC) negative focusing
RUN-1 (Jun - Jul 22)	0.41 10 ²⁰	0.68 10 ²⁰	-
RUN-2 (Dec 22 - Jul 23)	2.06 10 ²⁰	2.74 10 ²⁰	-
RUN-3 (Mar - July 24)	1.36 10 ²⁰	-	2.82 10 ²⁰
RUN-4 (Dec 24 - today)	2.58 10 ²⁰	-	-
TOTAL	6.41 x 10 ²⁰	3.42 x 10 ²⁰	2.82 x 10 ²⁰

🛟 Fermilab

Detector Performance

辈 Fermilab

Detector Calibration and Modelling

- Accurate modelling of the signal from TPC wires and new angular dependent **recombination model** (arXiv:2407.12969)
- Detector response calibration extracted from cosmic muons and protons from ν interactions, and the energy reconstruction validated comparing calorimetric and range-based reconstructions
- Use energy loss per unit length (dE/dx) vs residual range for particle identification (PID)

Average signal response for a track angular bin

Neutrino Candidates Reconstruction

- Two reconstruction frameworks to characterize v events
 - Pandora, pattern recognition software widely used in LArTPC
 - **SPINE**, entirely based on ML techniques
- Continuous effort to improve reconstruction and data/MC agreement
- Validation using visual scanning
 - Interaction point (vertex) reconstruction
 - Agreement between light and charge signal barycenters along longitudinal (beam) direction within 1 m

BNB ν_{μ} CC candidate

v_{μ} CC candidate: 1 Event, 3 pictures

- Three tracks at the primary vertex
- Track 1 (muon): downward going, crossing the cathode and stopping in the detector (L = 6.4 m)
- Track 2 (hadron): downward going, interacting in the detector and producing two short protons
- Track 3 (proton): upward going
 (L = 3.4 cm)

NuMI ν_e CC candidates

- Two tracks at the primary vertex
- QE v_e CC candidate fully contained in active LAr, (E_{dep} = 870 MeV)
- Electron shower: downward going
- Track 1 (proton): upward going and stopping (L = 13 cm)

- Three tracks at the primary vertex
- v_e CC candidate fully contained in active LAr, (E_{dep} = 830 MeV)
- Electron shower: downward going (E_{dep} 570 MeV
- Track 1 (proton): upward going and stoppong (L = 23.7 cm)
- Track 2 (hadron): upward going and stopping (L = 33.4 cm)

Neutrino Events + Cosmics: Real Life

ICARUS Physics Program

- SBN joint (SBND+ICARUS) physics program: address the question of sterile neutrinos with the BNB beam by comparing v_e and v_{μ} interactions at different distances from the target, as measured by ICARUS and SBND LArTPCs
- Before performing the joint oscillation analysis with SBND, ICARUS is now focusing **on a standalone physics program**
 - Analysis of the v_{μ} disappearance channel with BNB, to be complemented with v_{e} disappearance from NuMI beam data (enriched v_{e} composition due to 6-degree off-axis): verify the Neutrino-4 experiment claim
 - Study v_{μ} and v_{e} interactions from the NuMI beam to measure v-Ar cross sections and optimize event reconstruction in the **DUNE** energy range
 - Search for evidence of physics Beyond Standard Model in other channels using NuMI data. A channel was already explored: dark matter decay in a di-muon state (Phys.Rev.Lett. 134 (2025) 15, 151801)
- Blinding policy established to ensure robust and unbiased interpretation of the collected data: analyses are initially validated with a subset of collected data

v_{μ} Disappearance Analysis with BNB Beam Data

- Selection of **fully contained** v_{μ} **CC events with 1\mu+N protons** in the final state (event kinematics extracted from range measurements)
 - PMT light signal within 1.6 µs beam spill in coincidence with reconstructed TPC tracks, no CRT signal
 - A muon with $L_{trk} > 50$ cm, N > 1 protons with $E_{\kappa} > 50$ MeV ($L_{trk} > 2.3$ cm)
 - No additional π or γ
- Residual cosmic background < 1%
- Two independent analysis streams, respectively based on
 - Pandora: pattern recognition algorithm
 - SPINE: Machine Learning (ML) base reconstruction code
- A further visual selection of v candidates is used to validate the event selection/reconstruction

400

200 \vec{p}_{TMiss}

p_{Tp}

v_{μ} Disappearance Analysis: Preliminary Results

 10% of Run-2 data analysed (2x10¹⁹ pot, about 20x data available) showing data/MC agreement within systematic effects for all studied kinematic variables

- Next analysis steps
 - Enlarge the control sample to confirm the robustness of the analysis

辈 Fermilab

- Proceed to full data unblinding and oscillation fit

Cross Section Measurements with NuMI Data

- Huge statistics to measure v_{μ} and v_e cross sections with different types of interactions (with 6 x 10²⁰ PoT: estimated 332,000 v_{μ} and 17,000 v_e)
- First analysis targets 1μ +Np+ 0π in the final state:
 - Signal definition: 1µ with p > 226 MeV/c, any proton with 400 MeV/c
 - Flux, interaction model, and detector systematic uncertainties included
 - Angle between μ and leadind p encodes information about Final State interactions
 - Transverse kinematic observables sensitive to Initial and Final State effects

Initial study with 15% of data, ready to enlarge statistics

🛟 Fermilab

Dark Sector models investigation with NuMI Data

- Rich BSM search program (light DM, Heavy Neutral Leptons, Higgs Portal scalar, tridents and more) can be pursued by exploiting the off-axis NuMi beam
- Models considered so far involve dark particles coupling to SM particles via Scalar Portal Interactions:
 - Higgs Portal Scalar: Scalar dark sector particles, interactions by mixing with Higgs boson
 - Heavy QCD axion: Pseudo-scalar particles, interactions by mixing with pseudo-scalar mesons
 - ICARUS performed a first search for a new long-lived particle decaying into di-muon
 - Events with 2 stopping muons are selected to reconstruct the scalar mass peak
 - Signal expected at small angle from the beam ($\theta_{NuMI} < 5$ degree)
 - Flux, interaction model and detector systematic uncertainties included

Phys. Rev. Lett. 134, 151801 (2025)

BSM searches with NuMI Data: Results

- **Open box result:** 8 events observed, compared to MC expectations of 8 events mostly from v_{μ} CC coherent π production
- No New Physics signal observed

Phys. Rev. Lett. 134, 151801 (2025)

ICARUS Pisa

				FTE	FTE - Totale
Giovanni	Chiello	Borsista	Università di Pisa	1.00	
Namitha	Chithirasreemadam	AdR	Università di Pisa	0.80	
Simone	Donati	PA	Università di Pisa	0.50	
Antonio	Gioiosa	RTT	Università del Molise	0.40	
Hussain	Kitagawa	Borsista	Università di Pisa	0.40	
Alessandro Maria	Ricci	AdR	Università di Pisa	0.80	3.90
Х	Y	PhD 2025/2026	Università di Pisa	1.00	4.90

Master Theses					
G. Chiello	Muon Momentum Reconstruction in ICARUS-T600 LArTPC via Multiple Scattering	Physics	Università di Pisa	March, 2025	
Conferences					
A.M. Ricci	Improving ICARUS track reconstruction algorithms	IFAE 2025	Cagliari	April, 2025	
A.M. Ricci	Latest Results from the ICARUS Experiment at the Short Baseline Neutrino Program	ICNFP 2025	Crete	July, 2025	
A.M. Ricci	Improving ICARUS track reconstruction algorithms	ICNFP 2025	Crete	July, 2025	
A. Gioiosa	High Voltage Control System for the ICARUS Experiment at Fermilab	IPRD 2025	Siena	September, 2025	
G. Chiello	Muon Momentum Reconstruction in ICARUS-T600 LArTPC via Multiple Scattering	SIF 2025	Palermo	September, 2025	

High Voltage Control Software

- ICARUS demands a High-Voltage (HV) system with exceptional stability and precise control
- HV Control System based on EDAS 1000
 - Multifunction Ethernet DAQ board, designed for high-speed analog data acquisition, digital I/O control and network integration
 - It offers power, flexibility and modularity for industrial and testing environments
 - It can be easily programmed and configured with full software support (Visual Designer, Net Link): no need for low-level coding
- Since 2023, Antonio Gioiosa has developed fully automated procedures to:
 - Configure voltage settings
 - Configure ramp rates
 - Configure precise safety thresholds
 - Perform automatic ramp down during an UPS warning
 - Perform automatic ramp stop
 - Control alarm
- Achieved HV stability within 25V at -75kV

Antonio Gioiosa, Convener of the HV Team

Slow Control and Data Quality Monitor

- Slow Control:

- PMT Monitor voltage/currents (EPICS)
- EPICS framework data storage system
- **Online Monitor pages** (used by Shifter/Experts on call):
 - PMT
 - Wire Bias
 - Ground impedance

Jamie C. Dyer (FNAL), **Antonio Gioiosa**, Gianluca Raselli (INFN-PV), Geoffrey Savage (FNAL), Donatella Torretta (FNAL), Matteo Vicenzi (BNL)

Archiver Engine Summary

IOC last execution 2023-03-28 07:45:01

State	RUNNING
Uptime	19.24 days
Last Written	2023/03/28 07:44:38
Memory	75.5 MB of 228.0 MB used (33.1 %)

Group	Enabled	Channels	Connected	State	Alarm Sev.	Time Last Archive
beam	Enabled	28	0	Disconnected	INVALID	2023-03-09 01:05:04
cathodehv	Enabled	8	8	ok	ok	2023-03-28 07:44:33
сгуо	Enabled	104	0	Disconnected	INVALID	2023-03-09 01:05:04
electrical	Enabled	12	12	UDF_ALARM	INVALID	2023-03-28 07:44:35
pmthv	Enabled	2186	2180	UDF_ALARM/Disconne	INVALID	2023-03-28 07:42:32
pmttemperature	Enabled	6	6	UDF_ALARM	INVALID	2023-03-09 01:19:34
pmtvme	Enabled	24	24	ok	ok	2023-03-09 13:46:25
timing	Enabled	23	0	Disconnected	INVALID	2023-03-09 01:05:04
tpcps	Enabled	1248	1248	UDF_ALARM	INVALID	2023-03-28 07:44:37
wirebias	Enabled	12	12	ok	ok	2023-03-28 07:44:33

MC Production/Data Processing with POMS

- Production Teams at FNAL and CNAF

- **Responsible** for handling the requests and setting up MC simulations or data processing campaigns
- **Responsible** for defining the required stages and their configurations according to the intended goals (calibration, signal and/or background studies, or data analysis)
- Once configured and tested, the campaigns are submitted to the Computing Centers (Fermilab, NERSC - operated by LBNL, and CNAF)
- Alessandro Maria Ricci, Antonio Gioiosa are providing leading contribution to this effort

paign Search Q	Production	Campaign Editor for	Alessandro Maria Ricci	
	Management	2025A ICARUS NuMI Nue	MC CV	~
al Links	System		production	~
Jser Documentation		•		
erviceNow Page				
igbook				
ne Calendar				
	Compaign 2025A ICAPUS NuM	Nue MC CV DetSug		
ient	Campaign 2023A_ICAROS_NUMI_			
rship (POMS)	C Lin	[0	Click on element to select / Double click to open / Right click to add stages]	
	Edit			
lata	<2025A_ICARUS_NuMI_N	ue_MC_CV_DetSys> VAR1_g4step2_detsim_reco1_reco2_cat	VAR12_g4step2_detsim_reco1_reco2_caf	
ata		VAR2_g4step2_detsim_reco1_reco2_caf	VAR13_g4step2_detsim_reco1_reco2_caf	
unches		VAR3_g4step2_detsim_reco1_reco2_caf	VAR14_g4step2_detsim_reco1_reco2_caf	
		VAR4_g4step2_detsim_reco1_reco2_caf	VAR16_g4step2_detsim_reco1_reco2_caf	
aign Data		VAR5 g4step2 detsim reco1 reco2 caf	VAR15_g4step2_detsim_reco1_reco2_caf	
gns		VAR6_04step2_detsim_reco1_reco2_caf		
gn Stages			VAR_smail1_g4step2_detsim_reco1_reco2_caf	
Campaigns	gen filter g4sten1	VAR/_g4step2_detsim_reco1_reco2_car	VAR_small2_g4step2_detsim_reco1_reco2_caf	
ure Work	g4step2_detsim_re	co1_reco2_caf_CV		
e Login/Setup		VAR9_g4step2_detsim_reco1_reco2_caf		
		VAR10_g4step2_detsim_reco1_reco2_caf		
se Job Type				

Improving Track Reconstruction Algorithms (I)

- Pandora may erroneously break and lose a significant fraction of the particle's track
- These cases of poor reconstruction are caused by
 - hit inefficiencies
 - kinks in particles trajectories
 - or particles crossing the cathode or the wire support structure of Induction 1 wires
- This effect impacts a few % of the v_{μ} CC sample, increases the uncertainty in momentum reconstruction, a feature that is still poorly modelled in the Monte Carlo)

Alessandro Maria Ricci has developed a "stitching algorithm" to repair these tracks

Improving Track Reconstruction Algorithms (II)

7

- Simple and quick:
- Treat the VSS case (SVS disregarded)

- Align barycenters, start- and end-point along the z (beam) axis
- Check overlap between segments

- Check angle/distance between segments

3.2% of muon tracks can be repaired Significant effects at z = 0and at the Cathode (|x| = 210 cm)

Muon Momentum Reconstruction via Multiple Scattering

- ICARUS typically exploits two ways to reconstruct charged particles' energy
 - Calorimetric energy reconstruction from e⁻ ionization charge collected on TPC wires
 - Range-based energy reconstruction (continuous slowing-down approximation)
- This is feasible only for fully contained particles
- Additional method for uncontained muons: exploit Multiple Coulomb Scattering (MCS)
 - 2 state-of-the-art MCS based algorithms
 - Gran Sasso algorithm
 - MicroBooNE algorithm
- Gran Sasso algorithm:
 - Use 2D, or 3D hits
 - Divide µ track into N segments and measures deflections
 - Build a χ^2 -like function to estimate momentum
 - Pi Pi+1

 θ_i

 θ_{i+1}

- Polygonal approach
 - Linear-fit approach

- MicroBooNE algorithm:
 - Use 3D hits only
 - Divide μ track into N segments and measures deflections
 - Build a **likelihood** function to estimate momentum
 - Only uses linear-fit approach

Giovanni Chiello's Master Thesis in Physics at the Università di Pisa, March 2025

Monte Carlo: Results (3D Algorithm)

Real Data: Results (3D Algorithm)

- Efficiency: 90% (slightly lower in data than in MC)
- Fractional bias: few %
- Resolution: 14% at high momentum (slightly worse for Gran Sasso algorithm)

Participate in the ν_{μ} Disappearance Analysis

- Namitha Chithirasreemadam will contribute to the study of Detector Systematics and the development of the Oscillation Fitting Procedure
- Systematics
 - Neutrino flux systematics (mostly Fermilab colleagues)
 - Neutrino interaction model systematics (mostly Fermilab colleagues)
 - Detector Systematics: a lot of effects already being studied
 - Recombination
 - Diffusion
 - Electron Lifetime
 - Space Charge
 - Scintillation Model
 - TPC Signal
 - TPC Noise
 - TPC Intransparency
 - Cathode Bending
 - Induction 1 Wire Gap
 - Trigger Efficiency
 - Additional Sources
- Oscillation Fitting Procedure
 - Learn, use and develop PROfit framework

Long-Standing Collaboration with the v Community

NEWS	H2020-MSCA-RISE-2018	INFN-PI	UNIPI	2017-2023
INTENSE	H2020-MSCA-RISE-2018	INFN-PI	UNIPI	2019-2024
INTENSE	H2020-MSCA-ITN-2019	INFN-PI	UNIPI	2020-2024
PROBES	H2020-MSCA-RISE-2020	INFN-PI	UNIPI	2022-2026
SENSE	HORIZON-MSCA-2021-SE-01	INFN-PI	UNIPI	2022-2026
PICO	HORIZON-MSCA-2023-CITIZENS-01	INFN-PI		2024-2026
BEYOND	HORIZON-MSCA-2024-SE-01	INFN-PI		2026-2029

Thanks to the Ufficio Fondi Esterni of Infn Pisa

Long-Standing Collaboration with the ν Community

Backup

