RD_FCC preventivi TK

Perugia

> Mechanical Studies on the Vertex> Innovative LGAD designs

RD_FCC_PG TK: Alessandro Fondacci, Arianna Morozzi, Cristiano Turrioni, Daniele Passeri, Francesco Moscatelli, Giorgio Baldinelli, Tommaso Croci

Mechanical Studies on The Vertex

Simulations so far

Thermal Analysis

Aeroelastic Analysis

Software: Ansys Fluent (Finite-Volume-Method) Scope: Evaluate cooling performance The application of two different types of simulation has been studied

Simulations so far

Thermal Analysis

Aeroelastic Analysis

We managed to simulate a full sector of the vertex which includes all the three layers.

- Maximum temperature of about 35°C in layer 1, when having inlet air at 15°C with a constant velocity of 10 m/s and 10% turbulence instensity.
- Some cross-talk found between air flow of different layers (this opens for further optimizations for layer 1 and 2).

Temperature along the staves

Simulations so far

Thermal Analysis

Aeroelastic Analysis

Performed on a single stave of layer 3 (the longer one, so it is plausibly a worst case for vibrations)

Natural frequencies of the structure have been estimated

Natural frequencies and vibrations modes

- 1st mode @ about 120 Hz.
- Vibrations found in the micron scale.

Huge dependency of the results on mechanical constraints and material properties → Experimental measurements are crucial

2026 activity

Measurement campaign of thermal and mechanical properties of solid materials in use.

- Now they are estimated based on libraries and experience.
- For example, Carbon Fiber (CF) behaves very differently depending on plies base-materials, orientation, number of layers, pressure during the curing...
- Synergy with DRD8 Project 2.2 "Characterisation of Material Properties and Database Development". (Perugia is involved).

- Realization of a custom apparatus for the measurement of the thermal conductivity.
- Design already in hand.
- Request of 4K€ for the purchase of the components.

 Simulation so far were done through two mediumperformance desktop workstation

 Dynamic simulations require larger computation resources, present resources are currently saturated. New resources in a different computational model, exploiting the local clusters

Request **4K€ to co-fund** a new server with large disk space

The first prototype run of **DC-RSD** was released by FBK in November 2024

Compensated LGAD show good gain behaviour after fluences of the order of 5×10^{15} n/cm²

New NLGAD batch is in progress to study donor removal – expected delivery by mid August

All sensors achieve a space resolution **below 5% of the pitch**

The first prototype run of **DC-RSD** was released by FBK in November 2024

Compensated LGAD show good gain behaviour after fluences of the order of 5×10^{15} n/cm²

New NLGAD batch is in progress to study donor removal – expected delivery by mid August

Good gain behaviour of the compensated LGAD sensors after irradiation

Even in compensated LGADs, carbon mitigates the acceptor removal

The first prototype run of **DC-RSD** was released by FBK in November 2024

Compensated LGAD show good gain behaviour after fluences of the order of 5×10¹⁵ n/cm²

New NLGAD batch is in progress to study donor removal – expected delivery by mid August

The NLGAD batch will be used to study the donor removal coefficient, c_D

14 epitaxial substrates with active thickness of 55 μm

+ 3 substrates with active thickness of 450 μm

2026 activity

- Study of the radiation hardness of the first DC-RSD production
- Simulation and design of the second DC-RSD production replacing the isolating trenches with surface resistors to improve both the fill factor and the resolution uniformity
- For compensated LGAD characterization of NLGAD production, with extraction of donor removal coefficient
- Simulation and design of the second Compensated production

All the activities are financed by external projects.

LGAD activity: there are no financial requests for 2026 in RD_FCC

Mechanical simulation needs experimental constraints: 4 keu for a custom apparatus

Simulation are hungry: 4 keu for additional, specialized, computational resource

LGAD activity is funded by its own for now, no request for 2026

Anagrafica 2025

RD_FCC Perugia

Nome	% FTE	Qualifica (2023)	sigla principale
Alessandro Rossi	10	PA	CMS
Attilio Santocchia	20	PA	CMS
Claudia Cecchi	10	PA	BELLE2
Cristiano Turrioni	10	PostDoc	Fase2
Daniele Passeri	10	PA	Fase2
Elisa Manoni	10	Ric. INFN	BELLE2
Francesco Moscatelli	10	Ric. CNR	Fase2
Gabriele Martelli	30	PostDoc	LHCb
Gian Mario Bilei	10	DR INFN	CMS
Giorgio Baldinelli	20	PA	Fase2
Livio Fanò	10	PA	Fase2
Maria Elena Ascioti (*)	20	PhD (II anno)	CMS
Arianna Morozzi	10	Tecnologa	GR5
Orlando Panella	10	I ric. INFN	GR4
Stefano Moneta	10	PostDoc	BELLE2
Valentina Mariani	20	RTD	CMS
Giulia Pascoletti	50	Assegnista ING	CMS
Totale FTE	2,7		

Assegnista ING 5,9% RTD 5,9% I ric. INFN 5,9% PA 35,3% Tecnologa 5,9% PhD (II anno) 5,9% DR INFN 5,9% Ric. CNR 5,9% Ric. INFN PostDoc 5.9%

Conteggio di Qualifica (2023)