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Abstract We extend the Standard Model (SM) analysis of
Martinelli et al. (Phys Rev D Ser 111:013005, 2025. 10.1103/
PhysRevD.111.013005), which was limited to light leptons
in the final state, to the semileptonic B → D∗τντ decay. By
using quantities that can be analised without the knowledge
of |Vcb|, we derive important information about the helicity
amplitudes and the hadronic form factors that can be com-
pared with the predictions of lattice QCD calculations. In
particular, there is a difficulty in reproducing simultaneously
the experimental values of R(D∗) and of other quantities rel-
evant for the semitauonic decays within the SM. As a byprod-
uct of our analysis, we also present a determination of |Vcb|
from the total decay rate.

1 Introduction

In this paper we extend the Standard Model (SM) analysis of
Ref. [1], which was limited to light leptons in the final state,
to include quantities related to the semileptonic B → D∗τντ

decay. In particular, we consider

the ratio of the branching fractions

R(D∗) = #(B → D∗τντ )

#(B → D∗ℓνℓ)
,

the longitudinal D∗-polarization fraction FL ,τ , (1)

the τ -polarization Pτ (D∗) .

In this way we may check the consistency of the measure-
ments available for the quantities in Eq. (1) (see Eqs. (36)–
(40) below) within the SM.

Using only the τ -observables (1) and light-lepton quanti-
ties that can be computed without the knowledge of |Vcb|,
a e-mail: simula@roma3.infn.it (corresponding author)

we may extract the reduced form factors (FFs) g(w)/ f (1),
f (w)/ f (1), F1(w)/ f (1) and F2(w)/ f (1) from the data and
compare them to the results of Lattice QCD (LQCD) cal-
culations. The standard FFs g(w), f (w), F1(w) and F2(w)

are those introduced in Ref. [2]. They are expressed as func-
tions of the recoil variable w, which in terms of the squared
four-momentum transfer q2 is given by

w ≡ 1 + r2 − q2/m2
B

2r
, (2)

with r ≡ mD∗/mB .
In the light-lepton sector our SM analysis is based on

the use of four single-differential ratios for semileptonic
B → D∗ℓνℓ decays (see Eqs. (15)–(18) below). Among
them the angular distributions depend on three basic parame-
ters (denoted in the following as {η, δ, ϵ}), which in the mass-
less lepton limit are defined in terms of experimentally mea-
surable quantities: the forward-backward asymmetry AFB ,
the longitudinal D∗-polarization fraction FL and the trans-
verse asymmetry A1c (see Eqs. (22)–(24) below).

We show that the addition of the quantities in Eq. (1) to the
analysis of the observables relevant for light-lepton semilep-
tonic B → D∗ decays leaves substantially unchanged the
results of the fit of the reduced FFs g(w)/ f (1), f (w)/ f (1)
and F1(w)/ f (1), while allowing for the extraction of the
reduced FF F2(w)/ f (1).

The main results of our work are the following:

• The value of F2(w)/ f (1) necessary to reproduce the
experimental values of FL ,τ , determined recently in two
w-bins by the LHCb Collaboration [3], is in good agree-
ment with LQCD calculations. On the contrary, in order
to fit the experimental determination of R(D∗) a much
larger value of F2(w)/ f (1) is necessary in the whole
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We present a simple approach to the study of semileptonic B → D!lνl decays based on the angular
distributions of the final state particles only. Our approach is model independent and never requires the
knowledge of jVcbj. By studying such distributions in the case of light leptons, a comparison between
results from different datasets from the Belle and BelleII Collaborations and between data and Standard
Model calculations is also given for several interesting quantities. A good consistency is observed between
some of the experimental results and the theoretical predictions.
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I. INTRODUCTION

In this work we discuss a straightforward approach to the
analysis of semileptonic B → D!lνl decays based on the
angular distributions of the final state particles. Although
several analyses which make use of the angular distribu-
tions already exist in the literature [1–13], our study as well
as the one in Ref. [14] are only based on the angular
distributions and reduce the problem to the determination
of few basic parameters (five in all). These parameters
encode in the most general way the contributions to the
differential decay rates coming from operators present in
the effective Hamiltonian either in the Standard Model
(SM) or from physics Beyond the Standard Model (BSM).
The analysis is model independent and never requires the
knowledge of jVcbj. In this work we analyze for the first
time the angular distributions of different experimental
datasets. This allows a direct comparison of the results
obtained from different experiments as well as with the
theoretical predictions based on the hadronic form factors
(FFs) obtained from available lattice QCD (LQCD) sim-
ulations. While in some specific cases differences (within
about two standard deviations) are visible, a quite good
consistency is observed between some of the experimental
results and the theoretical predictions of the SM using the
LQCD FFs. The present study is limited to B → D!lνl
decays with light leptons in the final states, for which

possible BSM contributions have been considered in the
past [7,15] and also more recently [11,13,16].
Using the most general structure of the fourfold differ-

ential decay rate for semileptonic B → D!lνl decays, the
five basic parameters (denoted in the following as
fη; η0; δ; ϵ; ϵ0g) are defined in terms of experimentally
measurable quantities related to different angular distribu-
tions, which will be the basis of our phenomenological
analysis, namely,

1

Γ
dΓ

d cos θv
¼ 3

4ð1þ ηÞ
fηþ ð2 − ηÞcos2θvg; ð1Þ

1

Γ
dΓ

d cos θl
¼ 3

8ð1þ η0Þ
× f2þ η0 − 2δ cos θl − ð2 − η0Þcos2θlg; ð2Þ

1

Γ
dΓ
dχ

¼ 1

2π

!
1 − ϵ

1þ η
cos 2χ − ϵ0

1þ η
sin 2χ

"
: ð3Þ

In order to disentangle δ from η0, a separation of the
dependence of 1=ΓdΓ=d cos θl on the even or odd terms in
cos θl is necessary. In literature it is common to refer to
observables like the forward-backward asymmetry AFB, the
longitudinal D!-polarization fraction FL, and the two
transverse asymmetries A1c and A9c.

1 These quantities
are related to the five hadronic parameters fη; η0; δ; ϵ; ϵ0g by
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1The asymmetries A1c and A9c correspond to the quantities S3
and S9, respectively, as defined in Ref. [17], multiplied by π. A9c

corresponds to Að1Þ
T defined in Eq. (37) of Ref. [4].
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Figure 36: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines
correspond to 68% and 95% C.L. contours, respectively. The result of the global fit

(which does not include |Vub/Vcb| from baryon modes nor |Vcb| from Bs ! D(⇤)
s `⌫) is

(|Vcb|, |Vub|) = (39.46 ± 0.53, 3.60 ± 0.14) ⇥ 10�3 with a p-value of 0.66. The lattice and
experimental results that contribute to the various contours are the following. B ! ⇡`⌫:
lattice (FNAL/MILC 15 [124], RBC/UKQCD 15 [125], and JLQCD 22 [126]) and experi-
ment (BaBar [138, 139] and Belle [140, 141]). B ! D`⌫: lattice (FNAL/MILC 15C [132]
and HPQCD 15 [133]) and experiment (BaBar [142] and Belle [143]). B ! D⇤`⌫: lattice
(FNAL/MILC 21 [136], JLQCD 23 [137], HPQCD 23 [135]) and experiment (Belle [144, 145],
Belle II [146], HFLAV [148]). B ! ⌧⌫: lattice (Nf = 2 + 1 + 1 determination of
fB in Eq. (168) [20, 36, 67, 68]) and experiment (BaBar [510] and Belle [509]). Bs !
K`⌫/Bs ! Ds`⌫: lattice (HPQCD 14 [127], RBC/UKQCD 23 [128], FNAL/MILC 19 [587],
HPQCD 19 [134]) and experiment (LHCb [670]). ⇤b ! p`⌫/⇤b ! ⇤c`⌫: lattice
(Detmold 15 [494]) and experiment (LHCb [650]). Bs ! D⇤

s`⌫/Bs ! Ds`⌫: lattice
(HPQCD 19 [134] and HPQCD 19B [640]) and experiment (LHCb [627, 628]). The in-
clusive determinations are taken from Refs. [225, 308, 669] and read (|Vcb|, |Vub|)incl =
(42.16± 0.51, 4.13± 0.26)⇥ 10�3.
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phenomenological challenges in  transitionsb → c

puzzles in CKM entries 
(inclusive/exclusive)

Lepton Flavour Universality  
(or violation ?)

FLAG review 2024 (arXiv:2411.04268)

HFLAV update as Spring 2025 
https://hflav-eos.web.cern.ch/hflav-eos/semi/spring25/html/RDsDsstar/RDRDs.html

differences ≈ 3 − 4 σ

R(D(*)) = ℬ(B → D(*)τν) / ℬ(B → D(*)ℓν)
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Preliminary average of R(D) and R(D*) for Spring 2025
This web page contains the averages of the ratios of Branching Fractions R(D*)=BF(B→D*τντ)/BF(B→D* l νl) and R(D)=BF(B→Dτντ)/BF(B→D l νl).
In the present average we consider the following measurements:

BaBar Collaboration: Phys.Rev.Lett 109, 101802 (2012) [arXiv:1205.5442] and Phys.Rev.D 88, 072012 (2013) [arXiv:1303.0571]
Combined measurement of R(D) and R(D*+) based on the hadronic tagging sample and it is a combined. We use the results obtained imposing the isospin relations R(D0)=R(D+) and R(D*0)=R(D*+).
Belle Collaboration: Phys.Rev. D92, 072014 (2015) [arXiv:1507.03233]
Similar to the BaBar analysis: combined measurement of R(D) and R(D*), based on the hadronic tagging sample.
Belle Collaboration: Phys.Rev.Lett. 118, 211801 (2017) [arXiv:1612.00529] and Phys.Rev.D 97, 012004 (2018) [arXiv:1709.00129]
Measurement of R(D*+) based on an hadronic tagging sample. The τ is reconstructed in the hadronic decay channels τ→πν and τ→ρν. This is a simultaneous measurement of R(D*) and the τ
polarization.
Belle Collaboration: Phys.Rev.Lett. 124 (2020) 16, 161803 [arXiv:1910.05864]
Combined measurement of R(D) and R(D*+), based on a semileptonic tagging method. This superseeds the published measurement: Phys.Rev. D94, 072007 (2016) [arXiv:1607.07923]
LHCb Collaboration: Phys. Rev. Lett. 131, 111802 [arXiv:2302.02886]
Combined measurement of R(D) and R(D*+). Only the τ→μνμντ decay mode is used.
LHCb Collaboration: Phys. Rev. D 108, 012018 [arXiv:2305.01463] and
Measurement of R(D*+) where τ is reconstructed in the three-prong hadronic decay channels τ→3π(π0)ν.
Belle II Collaboration: Phys. Rev. D 110, 072020 (2024) [arXiv:2401.02840]
Measurement of R(D*), based on the hadronic tagging sample.
LHCb Collaboration: Phys. Rev. Lett. 134, 061801 (2025) [arXiv:2406.03387]
Measurement of RD(D+) and R(D*+), using the τ→μνμντ decay mode.
Belle II Collaboration: presented at Moriond EW 2025 and submitted to PRD [arXiv:2504.11220]
Measurement of RD(D+) and R(D*+), using semileptonic B tagging decay.

In the average we assume 100% correlation for the systematic uncertainties associated with the B→D(*) form factors, the D** composition and shapes, and the τ branching fractions. The other uncertainties
are considered uncorrelated between the various experiments. The average is obtained using the the CoCo averaging tool.

Experiment R(D*) R(D) Rescaled Correlation
(stat/total)

Inputs Remarks

BaBar 0.332 ± 0.024 ± 0.018 0.440 ± 0.058 ±
0.042

-0.45/-0.27 input Phys.Rev.Lett. 109,101802 (2012) arXiv:1205.5442_[hep-ex] Phys.Rev.D 88, 072012
(2013) arXiv:1303.0571_[hep-ex]

BELLEa 0.293 ± 0.038 ± 0.015 0.375 ± 0.064 ±
0.026

-0.56/-0.49 input Phys.Rev.D 92, 072014 (2015) arXiv:1507.03233 [hep-ex]

BELLEb 0.270 ± 0.035 +
0.028

-0.025

- - input Phys.Rev.Lett.118,211801 (2017) arXiv:1612.00529 [hep-ex] Phys.Rev.D 97, 012004
(2018) arXiv:1709.00129_[hep-ex]

BELLEc 0.283 ± 0.018 ± 0.014 0.307 ± 0.037 ±
0.016

-0.53/-0.51 input Phys.Rev.Lett. 124 (2020) 16, 161803 arXiv:1910.05864 [hep-ex]

LHCba 0.281 ± 0.018 ± 0.024 0.441 ± 0.060 ±
0.066

-0.49/-0.43 input Phys. Rev. Lett. 131, 111802 [arXiv:2302.02886]

LHCbb 0.267 ± 0.012 ± 0.019 - - input Phys. Rev. D 108, 012018 [arXiv:2305.01463]

Belle IIa 0.262 (+0.041 -0.039)
(+0.035 -0.032)

- - input Phys. Rev. D 110, 072020 (2024) arXiv:2401.02840

LHCbc 0.402 ± 0.081 ± 0.085 0.249 ± 0.043 ±
0.047

-0.48/-0.39 input Phys. Rev. Lett. 134, 061801 (2025) [arXiv:2406.03387]

Belle IIb 0.306 ± 0.034 ± 0.018 0.418 ± 0.074 ±
0.051

-0.27/-0.22 input Presented at Moriond EW 2025 and submitted to PRD [arXiv:2504.11220]

Average
logfile.txt  0.288 ± 0.012 0.347 ± 0.025 -0.39 chi2/dof = 13.435/13

(CL = 0.35)

R(D)-R(D*), 68% C.L. contours rdrds.pdf 

For visualisation only (HFLAV average uses always the individual measurements as inputs)
R(D)-R(D*), 68% C.L. single experiment contours rdrds_experiments.pdf 

R(D) .pdf 
R(D*) .pdf 

Compatibility with SM predictions

SM predictions for R(D) based on following Lattice calculations:

R(D) =0.299 ± 0.011, J.A.Bailey et al. [FNAL/MILC Collaboration], Phys.Rev.D 92, 034506 (2015)arXiv:1503.07237 [hep-lat]
R(D) =0.300 ± 0.008, H. Na et al., Phys.Rev.D 92, 054410 (2015) arXiv:1505.03925 [hep-lat]

The prediction obtained combining the two calculation above FLAG Collaboration arXiv:2411.04268 [hep-lat] ) is R(D) =0.2938 ± 0.054.

P. Gambino and D. Bigi in Phys.Rev.D 94, 094008 (2016) arXiv:1606.08030 [hep-ph] combined the two lattice calculations, with the experimental Form Factor of B→ D l ν from BaBar (2010) and Belle
(2016), obtaining R(D) = 0.299 ± 0.003. The result is compatible with the above calculations, but more accurate. Similar calculations were performed more recently by other groups (see table below for
references).

The SM prediction for R(D*) widely used for many HFLAV reports was:

R(D*)=0.252 ± 0.003, S.Fajfer, J.F.Kamenik, and I.Nisandzic, Phys.Rev.D85(2012) 094025 arXiv:1203.2654 [hep-ph]

In 2021 FNAL/MILC released the first unquenched Lattice calculation of B→D*l ν form factors at non-zero recoil, A.Bazavov et al. [Eur. Phys. J. C 82, 1141 (2022)] , predicting a value of R(D*)=0.265 ±
0.013, using only Lattice inputs. In addition, since 2023, two indipendent lattice calculations at non-zero recoil are available: from HPQCD arXiv:2304.03137[hep-lat] (R(D*)=0.273 ± 0.015), and JLQCD
arXiv:2306.05657[hep-lat] (R(D*)=0.252 ± 0.022), have been released. Various indipendent analyses of these three lattice data has been performed by various groups. The first were performed by G.
Martinelli et al. [Eur. Phys. J. C 84 (2024) 400] and I.Ray et al. [JHEP 01 (2024) 022], and the results reported in the table below. In these papers result combined with experimental inputs from Belle and
Belle II on B→D*l ν are reported along with results based on lattice only calculations.

In the following table SM predictions are reported along with the compatibility of the current HFLAV average with each of them. The correlation between R(D) and R(D*) theory prediction has been used
when avaialable in the publication.

R(D) R(D*) Compatibility in σ
D.Bigi, P.Gambino, Phys.Rev. D94 (2016) no.9, 094008 [arXiv:1606.08030 [hep-ph]] 0.299 ± 0.003 1.89
M.Bordone, M.Jung, Danny van Dyk, Eur.Phy.J.C 80 (2020) 2, 74 [arXiv:1908.09398 [hep-ph]] 0.298 ± 0.003 0.247 ± 0.006 4.13
G. Martinelli, S. Simula, L. Vittorio, Phys.RevD 105 (2022) 3, 034503 [arXiv:2105.08674 [hep-ph]] 0.296 ± 0.008 1.93
F. U. Bernlochner, Z. Ligeti, M. Papucci, M. T. Prim, D. J. Robinson, C. Xiong, Phys. Rev. D 106 (2022) 096015 [arXiv:2206.11281 [hep-ph]] 0.288 ± 0.004 0.249 ± 0.003 4.65
I.Ray, S.Nandi, JHEP 01 (2024) 022 [arXiv:2305.11855 [hep-lat]] 0.304 ± 0.003 0.258 ± 0.012 2.44
FLAG Collaboration, [arXiv:2411.04268 [hep-lat]] 0.2938 ± 0.0054 2.06
BaBar Collaboration, Phys.Rev.Lett. 123 (2019) 9, 091801 [arXiv:1903.10002 [hep-ex]] 0.253 ± 0.005 2.79
P.Gambino, M.Jung, S.Schacht, Phys.Lett.B795 (2019) 386 [arXiv:1905.08209 [hep-ph]] 0.254 + 0.007 − 0.006 2.58
G. Martinelli, S. Simula, L. Vittorio, Eur. Phys. J. C 84 (2024) 400 [arXiv:2310.03680 [hep-ph]] 0.262 ± 0.009 1.79
Arithmetic average 0.296 ± 0.004 0.254 ± 0.005 3.77

R(D) and R(D*) exceed the SM predictions (arithmetic average) given above, by 1.9σ and 2.7σ respectively. Considering the R(D)-R(D*)) correlation of -0.39, the resulting combined χ2 is 16.92 for 2
degree of freedom, corresponding to a p-value of 2.12 x 10-4. The difference with the SM predictions reported above, corresponds to about 3.8σ.

Acknowledgments
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SM predictions used by HFLAV (Spring 2025) 
https://hflav-eos.web.cern.ch/hflav-eos/semi/spring25/html/RDsDsstar/RDRDs.html

R(D(*)) = ℬ(B → D(*)τν) / ℬ(B → D(*)ℓν)

1. by definition  is independent of  and of the absolute normalization of the hadronic FFs 
2. it depends only on the -shape of the hadronic FFs

R(D(*)) |Vcb |
q2

at the present level of accuracy, lattice QCD is the only quantitative approach for 
evaluating hadronic FFs, where systematic uncertainties can be controlled and reduced

• arithmetic average ignores possible 
correlations among individual 
determinations (due to common 
inputs)

• which predictions for  are 
rigorously theoretical only (i.e., 
based on LQCD only) ?

R(D*)

https://hflav-eos.web.cern.ch/hflav-eos/semi/spring25/html/RDsDsstar/RDRDs.html
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found through a four-dimensional template fit in bins of tτ , q2, cos θhel , and the anti-D+
s

BDT. The fits are performed simultaneously to the Run 1 and Run 2 data sets, and the
results of the yields are used to find the following values for the fraction of longitudinal
polarization of the D∗ meson:

FD∗
L = 0.51 ± 0.07 (stat)± 0.03 (syst), for q2 < 7 GeV 2, (20)

FD∗
L = 0.35 ± 0.08 (stat)± 0.02 (syst), for q2 > 7 GeV 2, (21)

FD∗
L = 0.43 ± 0.06 (stat)± 0.03 (syst), for the full q2 range. (22)

The value obtained for the full q2 range is compatible with the SM predictions reported
in Table 2. Also, the results in the two bins are consistent with the SM. The main systematic
uncertainties are due to the limited size of the simulated samples, form factor parameters,
and the D+

s decay model.

5. Discussion and Interpretations

A summary of the R(D)–R(D∗) measurements described before and the latest aver-
age provided by HFLAV are reported in Table 3 and shown in Figure 9. The average by
HFLAV considers the systematic uncertainties due to B → D and B → D∗ form factors
and the contribution from the background due to feed down from B → D∗∗ℓν decays to
be fully correlated. This is generally considered a conservative assumption. The p-value
of the average is 35%. The experimental average deviates from the HFLAV SM average
reported in Table 1 by about 3.3σ, while its deviation from the prediction based on LQCD
alone decreases to about 2.5σ.
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Figure 9. Measurements of R(D) and R(D∗) listed in Table 3 and their two-dimensional average.

Contours correspond to 68% CL for both the bands and the ellipses. The black and blue points with

error bars are two recent SM predictions for R(D∗) and R(D). The SM prediction reported is based

on the results summarized in Table 1. This prediction and the experimental average deviate from

each other by about 3.3σ. The SM prediction based only on LQCD calculations is also reported,

where R(D) is taken from FLAG [25], while R(D∗) is taken from Ref. [28]. The deviation from the

experimental average and this prediction is about 2.5σ. The measurements are listed in Table 3.

It is worth noting that a meta-analysis presented in Ref. [2] shows that the D∗∗ con-
tributions in the background involve some significant correlations with R(D)–R(D∗)
measurements. This leads to a larger deviation from the SM prediction. We do not fur-
ther discuss this observation. Future precise measurements of B → D∗∗ℓνℓ decays, both

nice review from Klaver and Rotondo: Symmetry ’24 (doi=10.3390/sym16080964)

HFLAV SM prediction: fits of exp. data and LQCD results for the FFs 
R(D) is stable, while R(D*) changes significantly (the error by a factor of ~ 2)



are the experimental data and the theoretical shapes of the FFs consistent ?



the  channel B → D*ℓνℓ

d4Γ
dw dcosθv dcosθℓ dχ

=
3

16π
Γ0(w) |Vcb |2 {H2

+(w) sin2θv (1 − cosθℓ)2

+H2
−(w) sin2θv (1 + cosθℓ)2 + 4 H2

0(w) cos2θv sin2θℓ

−2 H−(w)H+(w) sin2θv sin2θℓ cos2χ
−2 H+(w)H0(w) sin2θv sinθℓ (1 − cosθℓ) cosχ

+2 H−(w)H0(w) sin2θv sinθℓ (1 + cosθℓ) cosχ}
Γ0(w) ≡

η2
EWmBm2

D*

(4π)3
G2

F w2 − 1(1 − 2rw + r2)

w ≡
1 + r2 − q2 /m2

B

2r

r ≡
mD*

mB

misidentify a pion as an electron and muon are 0.25% and
1.5% respectively [17] [18]. We impose lower thresholds
on the momentum of the leptons, such that they reach the
respective particle identification detectors for good hadron
fake rejection. Here we impose lab frame momentum
thresholds of 0.3 GeV=c for electrons and 0.6 GeV=c
for muons. We furthermore require an upper threshold of
2.4 GeV=c in the CM frame to reject continuum events.

III. DECAY KINEMATICS

The tree level transition of the B0 → D!−lþνl decay is
shown in Fig. 2. Three angular variables and the hadronic
recoil are used to describe this decay. The latter is defined
as follows:

w ¼ PB · PD!

mBmD!
¼ m2

B þm2
D! − q2

2mBmD!
; ð3Þ

where PB and PD! are four momenta of the B and the D!

mesons respectively, mB, mD! are their masses, and q2 is
the invariant mass squared of the lepton-neutrino system.
The range of w is restricted by the allowed values of q2

such that the minimum value of q2min ¼ m2
l ≈ 0 GeV2

corresponds to the maximum value of w,

wmax ¼
m2

B þm2
D!

2mBmD!
: ð4Þ

The three angular variables are depicted in Fig. 3 and are
defined as follows.

(i) θl is the angle between the direction of the lepton
and the direction opposite the B meson in the virtual
W rest frame.

(ii) θv is the angle between the direction of the D0

meson and the direction opposite the B meson in the
D! rest frame.

(iii) χ is the angle between the two planes formed by the
decays of the W and the D! meson, defined in the
rest frame of the B0 meson.

IV. SEMILEPTONIC DECAYS

In the massless lepton limit, the B0 → D!−lþνl differ-
ential decay rate is given by [7]

dΓðB0 → D!−lþνlÞ
dwd cos θld cos θvdχ

¼ η2EW3mBm2
D!

4ð4πÞ4
G2

FjVcbj2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ð1 − 2wrþ r2Þfð1 − cos θlÞ2sin2θvH2

þðwÞ

þ ð1þ cos θlÞ2sin2θvH2
−ðwÞ þ 4sin2θlcos2θvH2

0ðwÞ − 2sin2θlsin2θv cos 2χHþðwÞH−ðwÞ
− 4 sin θlð1 − cos θlÞ sin θv cos θv cos χHþðwÞH0ðwÞ
þ 4 sin θlð1þ cos θlÞ sin θv cos θv cos χH−ðwÞH0ðwÞg; ð5Þ

where r ¼ mD!=mB,GF ¼ ð1.6637& 0.00001Þ × 10−5ℏc2

GeV−2 and ηEW is a small electroweak correction (Calcu-
lated to be 1.006 in Ref. [19]). The helicity amplitudes
ðH&; H0Þ are defined as

HiðwÞ ¼ mB
R!ð1 − r2Þðwþ 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2wrþ r2

p hA1
ðwÞ jH̃iðwÞj; ð6Þ

where

H̃&ðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2wrþ r2

p
ð1 ∓

ffiffiffiffiffiffiffi
w−1
wþ1

q
R1ÞðwÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2wrþ r2

p ; ð7Þ

H̃0ðwÞ ¼ 1þ ðw − 1Þð1 − R2ðwÞÞ
ð1 − rÞ

; ð8Þ

R! ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD!

p

mB þmD!
. ð9Þ

A. The CLN parametrization

The helicity amplitudes H&;0ðwÞ in Eq. (5) are given in
terms of three form factors. In the CLN parametrization [4]
one writes these helicity amplitudes in terms of the form
factor hA1

ðwÞ and the form factor ratios R1;2ðwÞ. They are
defined as

FIG. 2. Tree level Feynman diagram for B0 → D!−lþνl.

FIG. 3. Definition of the angles θl, θv and χ for the decay
B0 → D!−lþνl.
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- four-fold differential decay rate in the SM and in massless lepton limit ( )mℓ = 0

H±(w) = f (w) ∓ m2
Br w2 − 1g(w)

H0(w) = F1(w) / (mB 1 − 2rw + r2)

Ht(w) = F2(w) mBr w2 − 1/ 1 − 2rw + r2

- helicity FFs  in terms of spin-parity ones  ( )H±,0,t(w) g(w), f (w), F1(w), F2(w) 1−,1+,1+,0+

- kinematical constraints
F1(w = 1) = mB(1 − r) f (w = 1)

F2(w = wmax) = 2F1(w = wmax) / [m2
B(1 − r2)]

this FF  appears only for mℓ ≠ 0



- experimental measurements of four single-differential rates  
d Γ
dx

x = {w, cosθℓ, cosθv, χ}

- first lattice determination of the spin-parity FFs at w > 1 by FNAL/MILC Coll. (arXiv:2105.14019)  

available at that time from Belle Coll. (arXiv:1809.03290)

why not doing a global fit of both lattice and exp. data ?
that was done by FNAL/MILC Coll. in arXiv:2105.14019 adopting BGL z-expansions for the FFs
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joint fit 
Belle (+ Babar) exp. data +  

FNAL/MILC data  

R(D*) = 0.2483 ± 0.0013

lattice fit 
FNAL/MILC data only  

R(D*) = 0.265 ± 0.013

S.S. @ Barolo ‘22

different shapes of  between lattice results and experimental measurementsF1(w)

experimental data cover the full kinematical range in w, while LQCD results are (typically) 
restricted to low recoils (this allows a better control over discretization errors)



different extrapolation methods of the LQCD FFs are consistent ?



a widely used extrapolation method is based on the Boyd-Grinstein-Lebed (BGL) expansion of the 
FFs in terms of the conformal variable z 
  

z =
t+ − t − t+ − t0
t+ − t + t+ − t0

t ≡ q2 t+ = (mB + mD*)2

hep-ph/9412324, hep-ph/9504235, 
hep-ph/9508211, hep-ph/9705252

fα(z) =
χα

ϕα(z) Bα(z)

∞

∑
k=0

b(α)
k zk α = {g, f, F1, F2}

outer functions Blaschke products

 = unitarity bounds∮|z|=1

dz
z

|ϕα(z)fα(z) |2 ≤ χα

a suitable choice of  allows to relate  to derivatives of vacuum 
polarization functions, which can be estimated using pQCD

ϕα χα
Meinan ’63, Okubo et al. ’71, 

Bourrely et al. ’81, 
 see also Bharucha et al. arXiv:1004.3249

the functions  are analytic inside the unit diskϕαBα fα |z | < 1

BGL z-expansion

∞

∑
k=0

[b(α)
k ]2 ≤ 1



unitarity constraints for  decays involve the  channels B → D*ℓνℓ 1−,1+,0+

∞

∑
k=0

[b(g)
k ]2 ≤ 1

∞

∑
k=0

[b( f )
k ]2 + [b(F1)

k ]2 ≤ 1
∞

∑
k=0

[b(F2)
k ]2 ≤ 1

two main variants of BGL z-expansions applied to a set of  known values of the FFs 

- frequentist truncated fits: involve a finite number of parameters  (truncation error) 

- Bayesian inference fits: include higher-order terms constrained by unitarity (as a prior)

Ndata

Nparms < Ndata

RBC/UKQCD arXiv:2303.11280,    Flynn, Jüttner, Tsang arXiv:2303.11285,   Bordone, Jüttner arXiv:2406.19974

for  Gambino et al. ’19,    Bordone et al. ’19,    Bernlocher et al. ’22,    Nandi et al. ’23, … B → D*

recently the unitarity bounds  have been calculated on the latticeχ1−,1+,0+,0−

Martinelli, SS, Vittorio: arXiv:2105.07851 (  transitions) 
                                       arXiv:2105.02497 (  transitions) 
                                       arXiv:2202.10285 (  and   transitions) 
SS, Vittorio: arXiv:2309.02135 (pion FF)

b → c
c → s
b → u c → d

 transitions 
Melis, Sanfilippo, SS: arXiv:2401.03920  
Harrison: arXiv:2405.01390

b → c



Dispersion Matrix (DM) approach

reappraisal and improvement of the method originally proposed by Bourrely et al. ’81 and Lellouch ’96

Di Carlo et al. 
arXiv:2105.02497 

ℳ =

< ϕf |ϕf > < ϕf |gt > < ϕf |gt1 > … < ϕf |gtN >
< gt |ϕf > < gt |gt > < gt |gt1 > … < gt |gtN >
< gt1 |ϕf > < gt1 |gt > < gt1 |gt1 > … < gt1 |gtN >

… … … … …
< gtN |ϕf > < gtN |gt > < gtN |gt1 > … < gtN |gtN >

inner product: < g |h > ≡
1

2π i ∫|z|=1

dz
z

g*(z) h(z)

< gt |ϕf > ≡ ϕ(z) f (z) < gt |gtm > =
1

1 − z*(tm) z(t)

t1, t2, …, tN are N values of the squared 4-momentum transfer where the form factor f(t) is known and 
t is its value where we want to compute f(t)

unitarity bound: < ϕf |ϕf > ≡
1

2πi ∫|z|=1

dz
z

|ϕ(z) f (z) |2 ≤ χ

gt(z) ≡
1

1 − z*(t) z

in the case of interest  are real numbers 
and the positivity of the inner product implies: 

zi ≡ z(ti)
det[ℳ] =

χ ϕf ϕ1 f1 … ϕN fN
ϕf 1

1 − z2
1

1 − zz1
… 1

1 − zzN

ϕ1 f1
1

1 − z1z
1

1 − z2
1

… 1
1 − z1zN

… … … … …
ϕN fN

1
1 − zN z

1
1 − zN z1

… 1
1 − z2

N

≥ 0



* the explicit solution is a band of values: β(z) − γ(z) ≤ f (z) ≤ β(z) + γ(z)

β(z) =
1

d(z) ϕ(z)

N

∑
j=1

fj ϕjdj
1 − z2

j

z − zj
γ(z) =

1
d2(z) ϕ2(z)

1
1 − z2

χ −
N

∑
i, j=1

fi fj ϕiϕjdidj
(1 − z2

i )(1 − z2
j )

1 − zizj

* unitarity is satisfied if , which occurs when  γ(z) ≥ 0 χ ≥ χDM
{ f} ≡

N

∑
i, j=1

fi fj ϕiϕjdidj
(1 − z2

i )(1 − z2
j )

1 − zizj

* important feature: when z → zj one has β(zj) → fj and γ(zj) → 0, i.e. the DM band collapses to fj for z = zj

for any given set of input data the DM approach reproduces exactly the known data and it allows to 
extrapolate the form factor in the whole kinematical range in a parameterization-independent way 
providing a band of values representing the results of all possible BGL fits satisfying unitarity and 
passing through the known points

* the DM band represents a uniform distribution which is combined with the multivariate distribution of 
the input data  to generate the final band for the FF {fj} f (z)

* kinematical constraint(s) can be easily and rigorously implemented in the DM approach [2105.02497, 
2105.08674, 2109.15248, 2202.10285, 2204.05925, 2309.02135, 2310.03680]

subset of unitary events with {fj} χ ≥ χDM
{ f}

* no free parameters, no explicit z-expansion (exact and automatic truncation independence)

unitarity filter 
χ < > χDM

{ f}

generate a sample 
of events {fj} subset of non-unitary events with {fj} χ < χDM

{ f}

arXiv:2105.02497 

d(z) = ΠN
m=1(1 − zzm)/(z − zm) di = Πm≠i(1 − zizm)/(zi − zm)



Bayesian inference BGL fits versus DM

the  channelBs → K

Flynn, Jüttner, Tsang arXiv:2303.11285
LQCD data: RBC/UKQCD arXiv:2303.11280
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Figure 4. Illustration of the joint Bayesian-inference fit to the HPQCD-14 [22], RBC/UKQCD
23 [24] and Khodjamirian 17 data sets with (K+, K0) = (5, 5). Left: plot of the form factor vs.
the squared momentum transfer; right: plot of the form factor after removing Blaschke and outer
function, normalised such that the kinematical constraint f0(0) = f+(0) becomes apparent.
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Figure 5. Comparison of Bayesian inference with the dispersive-matrix method for the form factors
of exclusive semileptonic Bs ! K`⌫ decay.

semileptonic Bs ! K`⌫ decay in Ref. [45]. Fig. 5 shows the comparison of both methods
for the fit to the data set RBC/UKQCD 23. The results for the dispersive-matrix method
were obtained with our own implementation of the algorithm proposed in Ref. [15]. We
find central values and error bands in excellent agreement. While the dispersive-matrix
computes a distribution of results for every value of the momentum transfer q

2, Bayesian
inference predicts the parameters of the BGL expansion and their correlations. Besides
the conceptual simplicity of the Bayesian-inference fitting strategy, the results for Bayesian

– 22 –

*** extrapolations to low  consistent ***q2
expected since 

the RBC/UKQCD data 
largely satisfy the DM filter
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frequentist BGL fits versus DM
FNAL/MILC arXiv:2105.14019 
HPQCD arXiv:2304.03137 (v2) 
JLQCD arXiv:2306.05657

the  channelB → D*
LQCD data:Martinelli, SS, Vittorio arXiv:2310.03680

all LQCD data included

DM is more precise at large recoil (low )q2
expected since 

the LQCD data partially 
satisfy the DM filter



theoretical questions in the  channelB → D*

• extrapolation methods in the full kinematical range: not an issue 

• use of unitarity and kinematical constraints: not an issue 

• perturbative renormalization of the weak current: not an issue at the current level of precision 

• -meson as a stable particle: not an issue at the current level of precision (see FLAG ’24) 

• differences in LQCD calculations by various Collaborations using different versions of the QCD 

action on the lattice: presently the most important issue

D*



hadronic FFs in the  channel B → D*
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• the results for all the FFs but  are consistent at low recoil, where the computations have been done ( ) 

• although  is consistent at low  between FNAL/MILC and JLQCD the extrapolated values are different 

• at large  the allowed band for  from JLQCD is very different from the bands obtained using FNAL/MILC or HPQCD 

• differences between  from HPQCD and the other two Collaborations at low recoil

F2(w) w ≲ 1.2

F2(w) w

w F1(w)

F2(w)

FNAL/MILC arXiv:2105.14019 
HPQCD arXiv:2304.03137 (v2) 
JLQCD arXiv:2306.05657



what about experiments ?



experimental measurements of the  decays for  B → D*ℓνℓ ℓ = e, μ

* three datasets for the single differential decay rates 
1
Γ

dΓ
dx

x = {w, cosθℓ, cosθv, χ}

Belle18: PRD 100 (2019) 052007 [1809.03290], erratum: PRD 103 (2021) 079901 

Belle23: PRD 108 (2023) 012002 [2301.07529] 

BelleII23: PRD 108 (2023) 092013 [2310.01170]

* a recent dataset for the (twelve) angular coefficients of the four-fold differential decay rate 

Belle23(Ji): PRL 133 (202) 131801 [2310.20286]

1
Γ

d4Γ
dw dcosθv dcosθℓ dχ

=
1
𝒩 {J1s(w) sin2θv+J1c(w) cos2θv+J2s(w) sin2θvcos2θℓ+J2c(w) cos2θvcos2θℓ

+J3(w) sin2θvsin2θℓcos2χ+J4(w) sin2θvsin2θℓcosχ+J5(w) sin2θvsinθℓcosχ
+J6s(w) sin2θvcosθℓ+J6c(w) cos2θvcosθℓ+J7(w) sin2θvsinθℓsinχ

+J8(w) sin2θvsin2θℓsinχ+J9(w) sin2θvsin2θℓsin2χ}

𝒩 ≡
8π
9 [6J1s + 3J1c − 2J2s − J2c] Ji ≡ ∫

wmax

1
dw Ji(w)

valid both within the SM 
and Beyond the SM

integrated angular coefficients

share the same dataset for  
with Belle23

d4Γ



analysis of the normalized angular distributions

What we can learn from the angular di↵erential rates (only) in
semileptonic B ! D⇤`⌫` decays

G.Martinelli,1 S. Simula,2 and L.Vittorio3

1
Physics Department and INFN Sezione di Roma La Sapienza,

Piazzale Aldo Moro 5, 00185 Roma, Italy
2
Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre,

Via della Vasca Navale 84, I-00146 Rome, Italy
3
LAPTh, Université Savoie Mont-Blanc and CNRS, F-74941 Annecy, France

We present a simple approach to the study of semileptonic B ! D⇤`⌫` decays based on the angular
distributions of the final state particles only. Our approach is model independent and never requires
the knowledge of |Vcb|. By studying such distributions in the case of light leptons, a comparison
between results from di↵erent data sets from the Belle and BelleII Collaborations and between data
and Standard Model calculations is also given for several interesting quantities. A good consistency
is observed between some of the experimental results and the theoretical predictions.

I. INTRODUCTION

In this work we discuss a straightforward approach to the analysis of semileptonic B ! D
⇤
`⌫`

decays based on the angular distributions of the final state particles. Although several analyses
which make use the angular distributions already exist in the literature [1–13], our study as well
as the one in Ref. [14] are only based on the angular distributions and reduce the problem to the
determination of few basic parameters (five in all). These parameters encode in the most general
way the contributions to the di↵erential decay rates coming from operators present in the e↵ective
Hamiltonian either in the Standard Model (SM) or from physics Beyond the Standard Model
(BSM). The analysis is model independent and never requires the knowledge of |Vcb|. In this work
we analyse for the first time the angular distributions of di↵erent experimental data sets. This
allows a direct comparison of the results obtained from di↵erent experiments as well as with the
theoretical predictions based on the hadronic form factors (FFs) obtained from available Lattice
QCD (LQCD) simulations. While in some specific cases di↵erences (within about two standard
deviations) are visible, a quite good consistency is observed between some of the experimental
results and the theoretical predictions of the SM using the LQCD FFs. The present study is
limited to B ! D

⇤
`⌫` decays with light leptons in the final states, for which possible BSM

contributions have been considered in the past [7, 15] and also more recently [11, 13, 16].
Using the most general structure of the four-fold di↵erential decay rate for semileptonic B !

D
⇤
`⌫` decays, the five basic parameters (denoted in the following as {⌘, ⌘0, �, ✏, ✏0}) are defined in

terms of experimentally measurable quantities related to di↵erent angular distributions, which
will be the basis of our phenomenological analysis, namely

1

�

d�

dcos✓v
=

3

4(1 + ⌘)

�
⌘ + (2� ⌘)cos2✓v

 
, (1)

1

�

d�

dcos✓`
=

3

8(1 + ⌘0)

�
2 + ⌘

0 � 2�cos✓` � (2� ⌘
0)cos2✓`

 
, (2)

1

�

d�

d�
=

1

2⇡

⇢
1� ✏

1 + ⌘
cos2�� ✏

0

1 + ⌘
sin2�

�
. (3)

In order to disentangle � from ⌘
0, a separation of the dependence of 1/�d�/dcos✓` on the even

or odd terms in cos✓` is necessary. In literature it is common to refer to observables like the
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Note that, if we neglect the mass of the final charged lepton, we have ⌘
0 = ⌘ and the four

quantities AFB , FL, A1c and A9c are su�cient to determine all the basic parameters.
The helicity amplitudes H+,�,0,t(w) are related to the standard FFs f(w), g(w), F1(w) and

F2(w) of Ref. [20], corresponding to definite spin-parity (to which the unitarity bounds can be
applied), by
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In what follows, we make use of the FFs obtained in Ref. [21] by applying the unitary Disper-
sive Matrix (DM) approach [22] to all available LQCD results determined by FNAL/MILC [23],
HPQCD [24] and JLQCD [25] Collaborations. With the above FFs we calculate the helicity am-
plitudes H+,�,0,t(w) in the full kinematical range of w (i.e., 1  w  w
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max) and, consequently,

the hadronic parameters {⌘, ⌘0, �, ✏} through Eqs. (19)-(22), as well as the asymmetries AFB , FL,
A1c through Eqs. (4)-(6). Within the SM one has ✏0 = 0 and, consequently, A9c = 0.
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The BelleII23 data [27] are given in the same ten bins for
the variables cos θv and χ, while in the case of cos θl the
BelleII23 bins are only eight, since the first BelleII23 bin
corresponds to the sum of the first three Belle18 and
Belle23 bins and the BelleII23 bins 2–8 correspond to the
Belle18 and Belle23 bins 4–10. Thus, we have a total of
N ¼ 30 data points for both Belle18 and Belle23 and N ¼
28 data points for BelleII23, including the corresponding
experimental covariance matrix of dimension N × N.
For each kinematical variable x the sum over the bins

covers the full kinematical range. Therefore, for each set of
experimental data we consider the ratios
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with Nx being the number of experimental bins for the
variable x. For the case of Belle18, using multivariate
Gaussian distributions for the experimental values of ΔΓx

n,
we construct the ratios (48) and evaluate also the corre-
sponding covariance matrix Cnm (n;m ¼ 1;…; N). Using
the experimental bins (47) one has (for n ¼ 1; 2;…; 10)
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For each experiment we can now extract the values of the
five hadronic parameters fη; η0; δ; ϵ; ϵ0g appearing in the
above equations. This is obtained by performing a χ2-
minimization procedure based on a correlated χ2. Since the
covariance matrices Cnm are singular because of the
conditions (49), we adopt the Moore-Penrose pseudoin-
verse approach, commonly used in least-square procedures.
Since each of the matrices Cnm possesses three null
eigenvalues, the total number of degrees of freedom is
Ndof ¼ N − 3 for each experiment.
Our results, which always correspond to the averaged

e=μ case, are presented in Table I for the basic parameters
fη; η0; δ; ϵ; ϵ0g (19)–(23) and in Table II in terms of the

TABLE I. Results obtained for the five hadronic parameters fη; η0; δ; ϵ; ϵ0g, describing the dependence of the ratios
(50)–(52) on the experimental bins of the Belle18 [18], Belle23 [26], and BelleII23 [27] datasets. The row denoted
by Belle18þ Belle23þ BelleII23 corresponds to the results obtained using simultaneously all three experimental
datasets. The row denoted as Belle23(Ji) shows the results corresponding to Eqs. (19)–(23) using the experimental
results for the w-integrated angular coefficients J̄i from Ref. [17]. The last row shows the SM predictions (35)–(39)
obtained by using the hadronic FFs of the unitary DM approach of Ref. [21] based on all available LQCD results
from FNAL=MILC [23], HPQCD [24], and JLQCD [25] collaborations. All of the results correspond to the
averaged e=μ case.

η η0 δ ϵ ϵ0

Belle18 0.894 (29) 0.846 (47) −0.534 (37) 0.346 (28) 0.004 (28)
Belle23 1.026 (59) 0.943 (81) −0.595 (41) 0.333 (61) 0.046 (59)
BelleII23 0.912 (28) 0.908 (47) −0.507 (28) 0.342 (22) 0.005 (19)
Belle18þ Belle23þ BelleII23 0.922 (18) 0.875 (29) −0.540 (18) 0.337 (16) 0.005 (16)
Belle23(Ji) 1.097 (73) 0.934 (86) −0.626 (49) 0.361 (69) −0.054 (67)
LQCD 1.109 (66) 1.121 (66) −0.705 (48) 0.415 (26) 0.0

TABLE II. Results for the quantities in Eqs. (4)–(7). The description of the different rows is the same as in Table I.

AFB FL A1c A9c

Belle18 0.217 (13) 0.528 (8) −0.183 (15) −0.002 (15)
Belle23 0.230 (14) 0.494 (14) −0.165 (30) −0.023 (29)
BelleII23 0.200 (12) 0.523 (8) −0.179 (13) −0.003 (10)
Belle18þ Belle23þ BelleII23 0.216 (7) 0.520 (5) −0.176 (9) −0.003 (8)
Belle23(Ji) 0.243 (14) 0.477 (17) −0.172 (32) 0.003 (32)
LQCD 0.249 (10) 0.475 (15) −0.196 (7) 0.0
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For each experiment we can now extract the values of the
five hadronic parameters fη; η0; δ; ϵ; ϵ0g appearing in the
above equations. This is obtained by performing a χ2-
minimization procedure based on a correlated χ2. Since the
covariance matrices Cnm are singular because of the
conditions (49), we adopt the Moore-Penrose pseudoin-
verse approach, commonly used in least-square procedures.
Since each of the matrices Cnm possesses three null
eigenvalues, the total number of degrees of freedom is
Ndof ¼ N − 3 for each experiment.
Our results, which always correspond to the averaged

e=μ case, are presented in Table I for the basic parameters
fη; η0; δ; ϵ; ϵ0g (19)–(23) and in Table II in terms of the

TABLE I. Results obtained for the five hadronic parameters fη; η0; δ; ϵ; ϵ0g, describing the dependence of the ratios
(50)–(52) on the experimental bins of the Belle18 [18], Belle23 [26], and BelleII23 [27] datasets. The row denoted
by Belle18þ Belle23þ BelleII23 corresponds to the results obtained using simultaneously all three experimental
datasets. The row denoted as Belle23(Ji) shows the results corresponding to Eqs. (19)–(23) using the experimental
results for the w-integrated angular coefficients J̄i from Ref. [17]. The last row shows the SM predictions (35)–(39)
obtained by using the hadronic FFs of the unitary DM approach of Ref. [21] based on all available LQCD results
from FNAL=MILC [23], HPQCD [24], and JLQCD [25] collaborations. All of the results correspond to the
averaged e=μ case.
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Belle18 0.894 (29) 0.846 (47) −0.534 (37) 0.346 (28) 0.004 (28)
Belle23 1.026 (59) 0.943 (81) −0.595 (41) 0.333 (61) 0.046 (59)
BelleII23 0.912 (28) 0.908 (47) −0.507 (28) 0.342 (22) 0.005 (19)
Belle18þ Belle23þ BelleII23 0.922 (18) 0.875 (29) −0.540 (18) 0.337 (16) 0.005 (16)
Belle23(Ji) 1.097 (73) 0.934 (86) −0.626 (49) 0.361 (69) −0.054 (67)
LQCD 1.109 (66) 1.121 (66) −0.705 (48) 0.415 (26) 0.0

TABLE II. Results for the quantities in Eqs. (4)–(7). The description of the different rows is the same as in Table I.
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Belle18 0.217 (13) 0.528 (8) −0.183 (15) −0.002 (15)
Belle23 0.230 (14) 0.494 (14) −0.165 (30) −0.023 (29)
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model-independent analysis of the angular distributions

LQCD predictions calculated with the hadronic FFs obtained using all the available LQCD determinations 

• for all datasets the results for  (and ) are consistent with zero as expected in the SM 

• the LQCD predictions are consistent with the results from the Belle23 dataset, while they show 

some tension with Belle18 and BelleII23, as well as with the results obtained using all the three 

datasets (~ dominated by BelleII23)
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BelleII23 bins are only eight, since the first BelleII23 bin
corresponds to the sum of the first three Belle18 and
Belle23 bins and the BelleII23 bins 2–8 correspond to the
Belle18 and Belle23 bins 4–10. Thus, we have a total of
N ¼ 30 data points for both Belle18 and Belle23 and N ¼
28 data points for BelleII23, including the corresponding
experimental covariance matrix of dimension N × N.
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For each experiment we can now extract the values of the
five hadronic parameters fη; η0; δ; ϵ; ϵ0g appearing in the
above equations. This is obtained by performing a χ2-
minimization procedure based on a correlated χ2. Since the
covariance matrices Cnm are singular because of the
conditions (49), we adopt the Moore-Penrose pseudoin-
verse approach, commonly used in least-square procedures.
Since each of the matrices Cnm possesses three null
eigenvalues, the total number of degrees of freedom is
Ndof ¼ N − 3 for each experiment.
Our results, which always correspond to the averaged

e=μ case, are presented in Table I for the basic parameters
fη; η0; δ; ϵ; ϵ0g (19)–(23) and in Table II in terms of the

TABLE I. Results obtained for the five hadronic parameters fη; η0; δ; ϵ; ϵ0g, describing the dependence of the ratios
(50)–(52) on the experimental bins of the Belle18 [18], Belle23 [26], and BelleII23 [27] datasets. The row denoted
by Belle18þ Belle23þ BelleII23 corresponds to the results obtained using simultaneously all three experimental
datasets. The row denoted as Belle23(Ji) shows the results corresponding to Eqs. (19)–(23) using the experimental
results for the w-integrated angular coefficients J̄i from Ref. [17]. The last row shows the SM predictions (35)–(39)
obtained by using the hadronic FFs of the unitary DM approach of Ref. [21] based on all available LQCD results
from FNAL=MILC [23], HPQCD [24], and JLQCD [25] collaborations. All of the results correspond to the
averaged e=μ case.
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Belle18 0.894 (29) 0.846 (47) −0.534 (37) 0.346 (28) 0.004 (28)
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Belle18 and Belle23 bins 4–10. Thus, we have a total of
N ¼ 30 data points for both Belle18 and Belle23 and N ¼
28 data points for BelleII23, including the corresponding
experimental covariance matrix of dimension N × N.
For each kinematical variable x the sum over the bins

covers the full kinematical range. Therefore, for each set of
experimental data we consider the ratios

Rx
n ≡ 1

PNx
m¼1ΔΓx

m
ΔΓx

n; ð48Þ

which should satisfy the normalization

XNx

n¼1

Rx
n ¼ 1; ð49Þ

with Nx being the number of experimental bins for the
variable x. For the case of Belle18, using multivariate
Gaussian distributions for the experimental values of ΔΓx

n,
we construct the ratios (48) and evaluate also the corre-
sponding covariance matrix Cnm (n;m ¼ 1;…; N). Using
the experimental bins (47) one has (for n ¼ 1; 2;…; 10)

Rθv
n ¼ 3

20ð1þ ηÞ

!
ηþ 2 − η

75
ð91 − 33nþ 3n2Þ

"
; ð50Þ

Rθl
n ¼ 3

40ð1þ η0Þ

!
2þ η0 −

δ
5
ð−11þ 2nÞ

−
2 − η0

75
ð91 − 33nþ 3n2Þ

"
; ð51Þ

Rχ
n ¼

1

10
−

1

4π
ϵ

1þ η

!
sin

2nπ
5

− sin
2ðn − 1Þπ

5

"

−
1

4π
ϵ0

1þ η

!
cos

2ðn − 1Þπ
5

− cos
2nπ
5

"
: ð52Þ

For each experiment we can now extract the values of the
five hadronic parameters fη; η0; δ; ϵ; ϵ0g appearing in the
above equations. This is obtained by performing a χ2-
minimization procedure based on a correlated χ2. Since the
covariance matrices Cnm are singular because of the
conditions (49), we adopt the Moore-Penrose pseudoin-
verse approach, commonly used in least-square procedures.
Since each of the matrices Cnm possesses three null
eigenvalues, the total number of degrees of freedom is
Ndof ¼ N − 3 for each experiment.
Our results, which always correspond to the averaged

e=μ case, are presented in Table I for the basic parameters
fη; η0; δ; ϵ; ϵ0g (19)–(23) and in Table II in terms of the

TABLE I. Results obtained for the five hadronic parameters fη; η0; δ; ϵ; ϵ0g, describing the dependence of the ratios
(50)–(52) on the experimental bins of the Belle18 [18], Belle23 [26], and BelleII23 [27] datasets. The row denoted
by Belle18þ Belle23þ BelleII23 corresponds to the results obtained using simultaneously all three experimental
datasets. The row denoted as Belle23(Ji) shows the results corresponding to Eqs. (19)–(23) using the experimental
results for the w-integrated angular coefficients J̄i from Ref. [17]. The last row shows the SM predictions (35)–(39)
obtained by using the hadronic FFs of the unitary DM approach of Ref. [21] based on all available LQCD results
from FNAL=MILC [23], HPQCD [24], and JLQCD [25] collaborations. All of the results correspond to the
averaged e=μ case.

η η0 δ ϵ ϵ0

Belle18 0.894 (29) 0.846 (47) −0.534 (37) 0.346 (28) 0.004 (28)
Belle23 1.026 (59) 0.943 (81) −0.595 (41) 0.333 (61) 0.046 (59)
BelleII23 0.912 (28) 0.908 (47) −0.507 (28) 0.342 (22) 0.005 (19)
Belle18þ Belle23þ BelleII23 0.922 (18) 0.875 (29) −0.540 (18) 0.337 (16) 0.005 (16)
Belle23(Ji) 1.097 (73) 0.934 (86) −0.626 (49) 0.361 (69) −0.054 (67)
LQCD 1.109 (66) 1.121 (66) −0.705 (48) 0.415 (26) 0.0

TABLE II. Results for the quantities in Eqs. (4)–(7). The description of the different rows is the same as in Table I.

AFB FL A1c A9c

Belle18 0.217 (13) 0.528 (8) −0.183 (15) −0.002 (15)
Belle23 0.230 (14) 0.494 (14) −0.165 (30) −0.023 (29)
BelleII23 0.200 (12) 0.523 (8) −0.179 (13) −0.003 (10)
Belle18þ Belle23þ BelleII23 0.216 (7) 0.520 (5) −0.176 (9) −0.003 (8)
Belle23(Ji) 0.243 (14) 0.477 (17) −0.172 (32) 0.003 (32)
LQCD 0.249 (10) 0.475 (15) −0.196 (7) 0.0
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The BelleII23 data [27] are given in the same ten bins for
the variables cos θv and χ, while in the case of cos θl the
BelleII23 bins are only eight, since the first BelleII23 bin
corresponds to the sum of the first three Belle18 and
Belle23 bins and the BelleII23 bins 2–8 correspond to the
Belle18 and Belle23 bins 4–10. Thus, we have a total of
N ¼ 30 data points for both Belle18 and Belle23 and N ¼
28 data points for BelleII23, including the corresponding
experimental covariance matrix of dimension N × N.
For each kinematical variable x the sum over the bins

covers the full kinematical range. Therefore, for each set of
experimental data we consider the ratios

Rx
n ≡ 1

PNx
m¼1ΔΓx

m
ΔΓx

n; ð48Þ

which should satisfy the normalization

XNx

n¼1

Rx
n ¼ 1; ð49Þ

with Nx being the number of experimental bins for the
variable x. For the case of Belle18, using multivariate
Gaussian distributions for the experimental values of ΔΓx

n,
we construct the ratios (48) and evaluate also the corre-
sponding covariance matrix Cnm (n;m ¼ 1;…; N). Using
the experimental bins (47) one has (for n ¼ 1; 2;…; 10)
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For each experiment we can now extract the values of the
five hadronic parameters fη; η0; δ; ϵ; ϵ0g appearing in the
above equations. This is obtained by performing a χ2-
minimization procedure based on a correlated χ2. Since the
covariance matrices Cnm are singular because of the
conditions (49), we adopt the Moore-Penrose pseudoin-
verse approach, commonly used in least-square procedures.
Since each of the matrices Cnm possesses three null
eigenvalues, the total number of degrees of freedom is
Ndof ¼ N − 3 for each experiment.
Our results, which always correspond to the averaged

e=μ case, are presented in Table I for the basic parameters
fη; η0; δ; ϵ; ϵ0g (19)–(23) and in Table II in terms of the

TABLE I. Results obtained for the five hadronic parameters fη; η0; δ; ϵ; ϵ0g, describing the dependence of the ratios
(50)–(52) on the experimental bins of the Belle18 [18], Belle23 [26], and BelleII23 [27] datasets. The row denoted
by Belle18þ Belle23þ BelleII23 corresponds to the results obtained using simultaneously all three experimental
datasets. The row denoted as Belle23(Ji) shows the results corresponding to Eqs. (19)–(23) using the experimental
results for the w-integrated angular coefficients J̄i from Ref. [17]. The last row shows the SM predictions (35)–(39)
obtained by using the hadronic FFs of the unitary DM approach of Ref. [21] based on all available LQCD results
from FNAL=MILC [23], HPQCD [24], and JLQCD [25] collaborations. All of the results correspond to the
averaged e=μ case.

η η0 δ ϵ ϵ0

Belle18 0.894 (29) 0.846 (47) −0.534 (37) 0.346 (28) 0.004 (28)
Belle23 1.026 (59) 0.943 (81) −0.595 (41) 0.333 (61) 0.046 (59)
BelleII23 0.912 (28) 0.908 (47) −0.507 (28) 0.342 (22) 0.005 (19)
Belle18þ Belle23þ BelleII23 0.922 (18) 0.875 (29) −0.540 (18) 0.337 (16) 0.005 (16)
Belle23(Ji) 1.097 (73) 0.934 (86) −0.626 (49) 0.361 (69) −0.054 (67)
LQCD 1.109 (66) 1.121 (66) −0.705 (48) 0.415 (26) 0.0

TABLE II. Results for the quantities in Eqs. (4)–(7). The description of the different rows is the same as in Table I.

AFB FL A1c A9c

Belle18 0.217 (13) 0.528 (8) −0.183 (15) −0.002 (15)
Belle23 0.230 (14) 0.494 (14) −0.165 (30) −0.023 (29)
BelleII23 0.200 (12) 0.523 (8) −0.179 (13) −0.003 (10)
Belle18þ Belle23þ BelleII23 0.216 (7) 0.520 (5) −0.176 (9) −0.003 (8)
Belle23(Ji) 0.243 (14) 0.477 (17) −0.172 (32) 0.003 (32)
LQCD 0.249 (10) 0.475 (15) −0.196 (7) 0.0
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model-independent analysis of the angular distributions

The BelleII23 data [27] are given in the same ten bins for
the variables cos θv and χ, while in the case of cos θl the
BelleII23 bins are only eight, since the first BelleII23 bin
corresponds to the sum of the first three Belle18 and
Belle23 bins and the BelleII23 bins 2–8 correspond to the
Belle18 and Belle23 bins 4–10. Thus, we have a total of
N ¼ 30 data points for both Belle18 and Belle23 and N ¼
28 data points for BelleII23, including the corresponding
experimental covariance matrix of dimension N × N.
For each kinematical variable x the sum over the bins

covers the full kinematical range. Therefore, for each set of
experimental data we consider the ratios
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n ≡ 1
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m¼1ΔΓx
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ΔΓx

n; ð48Þ

which should satisfy the normalization

XNx

n¼1
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n ¼ 1; ð49Þ

with Nx being the number of experimental bins for the
variable x. For the case of Belle18, using multivariate
Gaussian distributions for the experimental values of ΔΓx

n,
we construct the ratios (48) and evaluate also the corre-
sponding covariance matrix Cnm (n;m ¼ 1;…; N). Using
the experimental bins (47) one has (for n ¼ 1; 2;…; 10)
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For each experiment we can now extract the values of the
five hadronic parameters fη; η0; δ; ϵ; ϵ0g appearing in the
above equations. This is obtained by performing a χ2-
minimization procedure based on a correlated χ2. Since the
covariance matrices Cnm are singular because of the
conditions (49), we adopt the Moore-Penrose pseudoin-
verse approach, commonly used in least-square procedures.
Since each of the matrices Cnm possesses three null
eigenvalues, the total number of degrees of freedom is
Ndof ¼ N − 3 for each experiment.
Our results, which always correspond to the averaged

e=μ case, are presented in Table I for the basic parameters
fη; η0; δ; ϵ; ϵ0g (19)–(23) and in Table II in terms of the

TABLE I. Results obtained for the five hadronic parameters fη; η0; δ; ϵ; ϵ0g, describing the dependence of the ratios
(50)–(52) on the experimental bins of the Belle18 [18], Belle23 [26], and BelleII23 [27] datasets. The row denoted
by Belle18þ Belle23þ BelleII23 corresponds to the results obtained using simultaneously all three experimental
datasets. The row denoted as Belle23(Ji) shows the results corresponding to Eqs. (19)–(23) using the experimental
results for the w-integrated angular coefficients J̄i from Ref. [17]. The last row shows the SM predictions (35)–(39)
obtained by using the hadronic FFs of the unitary DM approach of Ref. [21] based on all available LQCD results
from FNAL=MILC [23], HPQCD [24], and JLQCD [25] collaborations. All of the results correspond to the
averaged e=μ case.

η η0 δ ϵ ϵ0

Belle18 0.894 (29) 0.846 (47) −0.534 (37) 0.346 (28) 0.004 (28)
Belle23 1.026 (59) 0.943 (81) −0.595 (41) 0.333 (61) 0.046 (59)
BelleII23 0.912 (28) 0.908 (47) −0.507 (28) 0.342 (22) 0.005 (19)
Belle18þ Belle23þ BelleII23 0.922 (18) 0.875 (29) −0.540 (18) 0.337 (16) 0.005 (16)
Belle23(Ji) 1.097 (73) 0.934 (86) −0.626 (49) 0.361 (69) −0.054 (67)
LQCD 1.109 (66) 1.121 (66) −0.705 (48) 0.415 (26) 0.0

TABLE II. Results for the quantities in Eqs. (4)–(7). The description of the different rows is the same as in Table I.

AFB FL A1c A9c

Belle18 0.217 (13) 0.528 (8) −0.183 (15) −0.002 (15)
Belle23 0.230 (14) 0.494 (14) −0.165 (30) −0.023 (29)
BelleII23 0.200 (12) 0.523 (8) −0.179 (13) −0.003 (10)
Belle18þ Belle23þ BelleII23 0.216 (7) 0.520 (5) −0.176 (9) −0.003 (8)
Belle23(Ji) 0.243 (14) 0.477 (17) −0.172 (32) 0.003 (32)
LQCD 0.249 (10) 0.475 (15) −0.196 (7) 0.0
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the LQCD predictions are consistent with the results from the Belle23(Ji) dataset

wl
max ≡ 1þ r2 −m2

l=m
2
B

2r
: ð13Þ

By dividing Eq. (9) by the total rate Γ, one gets the fourfold decay ratio independent of Vcb, namely,

1
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d4ΓðB → D$lνlÞ
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¼ 1
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þ J3ðwÞsin2θvsin2θl cos 2χ þ J4ðwÞ sin 2θv sin 2θl cos χ þ J5ðwÞ sin 2θv sin θl cos χ
þ J6sðwÞsin2θv cos θl þ J6cðwÞcos2θv cos θl þ J7ðwÞ sin 2θv sin θl sin χ
þ J8ðwÞ sin 2θv sin 2θl sin χ þ J9ðwÞsin2θvsin2θl sin 2χg; ð14Þ

where

N ¼ 8π
9
½6J̄1s þ 3J̄1c − 2J̄2s − J̄2c': ð15Þ

After integrating Eq. (14) over the recoil variable w and
over two out of the three angular coordinates fθv; θl; χg,
we obtain the single-differential angular decay rates

1
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By defining the following dimensionless quantities

η≡ 2
3J̄1s − J̄2s
3J̄1c − J̄2c

; ð19Þ

η0 ≡ 2
2J̄1s þ J̄1c þ 2J̄2s þ J̄2c
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δ ¼ −2
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ϵ0 ≡ −4
J̄9

3J̄1c − J̄2c
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we get the expressions in Eqs. (1)–(3).

Therefore, even including BSM effects (cf. also
Refs. [14,19]), the single-differential angular decay rates
(1)–(3) have a precise dependence on the angular coor-
dinates fθv; θl; χg governed only by five hadronic param-
eters given by fη; η0; δ; ϵ; ϵ0g, defined by Eqs. (19)–(23) in
terms of the integrated angular coefficients J̄i. The quan-
tities AFB, FL, A1c, and A9c can be easily derived from
Eqs. (1)–(3) obtaining Eqs. (4)–(7).

III. THE ANGULAR VARIABLES JiðwÞ IN THE SM

Within the SM the angular coefficients JiðwÞ can be
expressed in terms of the helicity amplitudes Hþ;−;0;tðwÞ
[17] as
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J6sðwÞ ¼ −2FðwÞ½H2
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−ðwÞ'; ð31Þ
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By dividing Eq. (9) by the total rate Γ, one gets the fourfold decay ratio independent of Vcb, namely,
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where
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After integrating Eq. (14) over the recoil variable w and
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By defining the following dimensionless quantities
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we get the expressions in Eqs. (1)–(3).

Therefore, even including BSM effects (cf. also
Refs. [14,19]), the single-differential angular decay rates
(1)–(3) have a precise dependence on the angular coor-
dinates fθv; θl; χg governed only by five hadronic param-
eters given by fη; η0; δ; ϵ; ϵ0g, defined by Eqs. (19)–(23) in
terms of the integrated angular coefficients J̄i. The quan-
tities AFB, FL, A1c, and A9c can be easily derived from
Eqs. (1)–(3) obtaining Eqs. (4)–(7).

III. THE ANGULAR VARIABLES JiðwÞ IN THE SM

Within the SM the angular coefficients JiðwÞ can be
expressed in terms of the helicity amplitudes Hþ;−;0;tðwÞ
[17] as

J1sðwÞ ¼
3

2
FðwÞ½H2

þðwÞ þH2
−ðwÞ'

#
1þ m2

l

3q2

$
; ð24Þ

J1cðwÞ ¼ 2FðwÞ
%
H2

0ðwÞ
#
1þm2

l

q2

$
þ 2

m2
l

q2
H2

t ðwÞ
&
; ð25Þ

J2sðwÞ ¼
1

2
FðwÞ½H2

þðwÞ þH2
−ðwÞ'

#
1 −

m2
l

q2

$
; ð26Þ

J2cðwÞ ¼ −2FðwÞH2
0ðwÞ

#
1 −

m2
l

q2

$
; ð27Þ

J3ðwÞ ¼ −2FðwÞHþðwÞH−ðwÞ
#
1 −

m2
l

q2

$
; ð28Þ

J4ðwÞ ¼ FðwÞH0ðwÞ½HþðwÞ þH−ðwÞ'
#
1 −

m2
l

q2

$
; ð29Þ

J5ðwÞ ¼ 2FðwÞ
!
H0ðwÞ½H−ðwÞ −HþðwÞ'

þm2
l

q2
HtðwÞ½HþðwÞ þH−ðwÞ'

"
; ð30Þ

J6sðwÞ ¼ −2FðwÞ½H2
þðwÞ −H2

−ðwÞ'; ð31Þ

WHAT WE CAN LEARN FROM THE ANGULAR DIFFERENTIAL … PHYS. REV. D 111, 013005 (2025)

013005-3

wl
max ≡ 1þ r2 −m2

l=m
2
B

2r
: ð13Þ

By dividing Eq. (9) by the total rate Γ, one gets the fourfold decay ratio independent of Vcb, namely,
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where

N ¼ 8π
9
½6J̄1s þ 3J̄1c − 2J̄2s − J̄2c': ð15Þ

After integrating Eq. (14) over the recoil variable w and
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By defining the following dimensionless quantities

η≡ 2
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we get the expressions in Eqs. (1)–(3).

Therefore, even including BSM effects (cf. also
Refs. [14,19]), the single-differential angular decay rates
(1)–(3) have a precise dependence on the angular coor-
dinates fθv; θl; χg governed only by five hadronic param-
eters given by fη; η0; δ; ϵ; ϵ0g, defined by Eqs. (19)–(23) in
terms of the integrated angular coefficients J̄i. The quan-
tities AFB, FL, A1c, and A9c can be easily derived from
Eqs. (1)–(3) obtaining Eqs. (4)–(7).

III. THE ANGULAR VARIABLES JiðwÞ IN THE SM

Within the SM the angular coefficients JiðwÞ can be
expressed in terms of the helicity amplitudes Hþ;−;0;tðwÞ
[17] as

J1sðwÞ ¼
3

2
FðwÞ½H2

þðwÞ þH2
−ðwÞ'

#
1þ m2

l

3q2

$
; ð24Þ

J1cðwÞ ¼ 2FðwÞ
%
H2

0ðwÞ
#
1þm2

l

q2

$
þ 2

m2
l

q2
H2

t ðwÞ
&
; ð25Þ

J2sðwÞ ¼
1

2
FðwÞ½H2

þðwÞ þH2
−ðwÞ'

#
1 −

m2
l

q2

$
; ð26Þ

J2cðwÞ ¼ −2FðwÞH2
0ðwÞ

#
1 −

m2
l

q2

$
; ð27Þ

J3ðwÞ ¼ −2FðwÞHþðwÞH−ðwÞ
#
1 −

m2
l

q2

$
; ð28Þ

J4ðwÞ ¼ FðwÞH0ðwÞ½HþðwÞ þH−ðwÞ'
#
1 −

m2
l

q2

$
; ð29Þ

J5ðwÞ ¼ 2FðwÞ
!
H0ðwÞ½H−ðwÞ −HþðwÞ'

þm2
l

q2
HtðwÞ½HþðwÞ þH−ðwÞ'

"
; ð30Þ

J6sðwÞ ¼ −2FðwÞ½H2
þðwÞ −H2

−ðwÞ'; ð31Þ

WHAT WE CAN LEARN FROM THE ANGULAR DIFFERENTIAL … PHYS. REV. D 111, 013005 (2025)

013005-3



0.004

0.006

0.008

0.010

0.012

0.014

0 1 2 3 4 5
0.004

0.008

0.012

0.016

0.020

0 1 2 3 4 5
-0.002

0.000

0.002

0.004

0.006

0 1 2 3 4 5

-0.020

-0.016

-0.012

-0.008

-0.004

0.000

0 1 2 3 4 5
-0.012

-0.008

-0.004

0.000

0.004

0 1 2 3 4 5
0.002

0.004

0.006

0.008

0.010

0 1 2 3 4 5

0.000

0.002

0.004

0.006

0.008

0 1 2 3 4 5
0.002

0.004

0.006

0.008

0.010

0 1 2 3 4 5
-0.004

-0.002

0.000

0.002

0.004

0.006

0 1 2 3 4 5

-0.004

-0.002

0.000

0.002

0.004

0 1 2 3 4 5
-0.002

0.000

0.002

0.004

0.006

0 1 2 3 4 5
-0.002

0.000

0.002

0.004

0.006

0 1 2 3 4 5

b J
1s
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
1c
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
2s
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
2c
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
3
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
4
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
5
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
6s
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
6c
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
7
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
8
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

b J
9
(w

n
)/
N

bin number

Belle23(Ji)

LQCD

̂J i(wn) ≡ ∫
wn

wn−1

dw Ji(w)

{wn} = {1.0, 1.15, 1.25, wmax}

(normalized) angular coefficients  from Belle23 and LQCDJi

exactly zero in the SM

differences do not 
exceed the  level2σ



0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28

e/µ average

Belle18

AFB = 0.217 ± 0.013

FL = 0.528 ± 0.008

⇢ = 0.17

Belle23

AFB = 0.230 ± 0.014

FL = 0.494 ± 0.014

⇢ = 0.23

BelleII23

AFB = 0.200 ± 0.012

FL = 0.523 ± 0.008

⇢ = -0.25

Belle23(Ji)

AFB = 0.243 ± 0.014

FL = 0.477 ± 0.017

⇢ = -0.06

LQCD

AFB = 0.249 ± 0.010

FL = 0.475 ± 0.015

⇢ = -0.74

F
L

AFB

contour plot at 68% probability 

• relevant differences among the results corresponding to different datasets (cfr. Belle18, BelleII23 with Belle23) 

• the SM LQCD predictions are consistent with the results from the Belle23 (or Belle23(Ji)) dataset, while the 

largest deviations occur with BelleII23

contour plots for light-lepton asymmetries

if Athens cries, Sparta does not laugh (G. Martinelli, talk @CERN ’24)

Martinelli, SS, Vittorio arXiv:2409.10492 
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can we extract all the SM FFs from data with almost no theory inputs ?

YES



extraction of the SM FFs from experiments

1
Γ

d Γ
dw

= w2 − 1(1 − 2r w + r2)
H2

+(w) + H2
−(w) + H2

0(w)
H

(mℓ = 0)

let’s add to the analysis of the angular differential decay rates also the one in the recoil variable w

up to a common factor, e.g. , the reduced hadronic FFs  can be 
determined through a (truncated) BGL fit applied to the light-lepton datasets (Belle18, 

Belle23, BelleII23) on  plus the experimental values of  few -observables

f (1) {g̃(w), f̃ (w), F̃ 1(w), F̃ 2(w)}

1
Γ

d Γ
dx

τ

R(D*) = 0.286 ± 0.012 (HFL AV 2411.18639)
FL,τ = 0.48 ± 0.09 (LHCb 2311.05224 + Belle 1903.03102)

(FL,τ)q2<7 GeV 2 = 0.52 ± 0.08 (LHCb 2311.05224)
(FL,τ)q2>7 GeV 2 = 0.34 ± 0.08 (LHCb 2311.05224)

Pτ(D*) = −0.38 ± 0.51+0.21
−0.16 (Belle 1612.00529)

Martinelli, SS, Vittorio arXiv:2410.17974 

to guarantee unitarity: use of the three reduced susceptibilities  (the only inputs from theory)χ̃1−,1+,0+ ≡
χ1−,1+,0+

f 2(1)

ρ = − 0.18

all observables are 

independent of  |Vcb |

g̃(w) ≡
g(w)
f (1)

=
χ̃1−

ϕg(z)Bg(z)

Ng

∑
i=0

ag
i zi

f̃ (w) ≡
f (w)
f (1)

=
χ̃1+

ϕf (z)Bf (z)

Nf

∑
i=0

a f
i zi

F̃ 1(w) ≡
F1(w)
f (1)

=
χ̃1+

ϕF1
(z)BF1

(z)

NF1

∑
i=0

aF1
i zi

F̃ 2(w) ≡
F2(w)
f (1)

=
χ̃0+

ϕF2
(z)BF2

(z)

NF2

∑
i=0

aF2
i zi
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Fig. 2 Comparison of the ratios Rn(x), given by Eqs. (27), corresponding to the experiments Belle18 [6] (black squares), Belle23 [7] (red circles)
and BelleII23 [8] (green triangles) with the results based on the unitary BGL fit (46) at orders (2, 2, 2, 0). The value of the reduced χ2-variable is
χ2/Nd.o. f. ≃ 1.1

Fig. 3 Comparison of the reduced FFs, extracted from a simultaneous
analysis of the light-lepton experiments Belle18 [6], Belle23 [7] and
BelleII23 [8], with the individual LQCD FFs from FNAL/MILC [10],

HPQCD [11] and JLQCD [12] Collaborations as well as with the results
of the unitary DM method of Ref. [9] based on all the LQCD FFs. The
width of the blue and red bands correspond to one standard deviation

123
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nice reproduction of 

light-lepton data on 
1
Γ

dΓ
dx

Belle18: black squares 

Belle23 red circles 

BelleII23: green triangles

exps. + unitarity reduced FFs 

LQCD reduced FFs

well-known issue of the slope of  
exp. slope consistent with the JLQCD one, 

not consistent with FNAL/MILC and HPQCD

F̃ 1(w)

similar conclusion also from the LQCD + exp. fit 
from Bordone and Jüttner arXiv: 2406.10074

x = w
x = cosθℓ

x = cosθv

x = χ

g̃(w)
f̃ (w)

F̃ 1(w)
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Fig. 5 The same as in Fig. 3, but for the reduced FFs extracted using the ratios (A2)–(A5) calculated using the complete set of angular coefficients
of the four-fold differential decay rate, determined by the Belle Collaboration in Ref. [33], labelled as Belle23(Ji) [1]

from the experiments.8 The only exception is represented by
the experimental determinations of FL ,τ (see Eq. (37)) and
of (FL ,τ )<,> (see Eqs. (38)–(39)). Indeed, since the experi-
mental value of FL ,τ include results from Ref. [3], the quan-
tities FL ,τ and (FL ,τ )<,> are not independent. Therefore, we
never use them together and make use only of either FL ,τ or
(FL ,τ )<,>. Finally, as expected, the inclusion of the experi-
mental value for the τ -polarization Pτ (D∗) (see Eq. (40)) has
negligible effects on the extracted reduced FFs, because of
the large uncertainty affecting its present determination (40).

The results of our fitting procedure are collected in Table 2
and compared with the predictions based on the unitary DM
method of Ref. [9] applied to all LQCD data. In Table 2 we
have included also the results for other two τ -observables,
namely the forward-backward asymmetry AFB,τ and the
transverse asymmetry A1c,τ (their definitions in terms of the
hadronic FFs can be easily inferred from, e.g., Ref. [1]).

The extracted reduced FFs g̃, f̃ and F̃1 are dominated
by the light-lepton data and basically coincides with those
determined in Sect. 6 (see Fig. 3). The w-dependence of
the extracted reduced FF F̃2 is shown in Figs. 6 and 7 and

8 We have checked the impact of possible correlations among R(D∗)
and (FL ,τ )<,>, assuming a correlation coefficient equal to ±0.5. No
significative effect has been found for the extracted reduced FFs.

compared with the results of the individual LQCD simula-
tions from FNAL/MILC [10], HPQCD [11] and JLQCD [12]
Collaborations.

The following comments are in order.

• The inclusion of the experimental values of either FL ,τ or
(FL ,τ )<,> (without R(D∗)) produces a reduced FF F̃2,
which is overall consistent with the LQCD results. Note
that the uncertainty of the extracted FF F̃2, clearly visi-
ble in Fig. 6, is presently dominated by the large uncer-
tainty in the experimental values of FL ,τ or (FL ,τ )<,>

(see Eqs. (37)–(39)). On the contrary, the inclusion of
the experimental value of R(D∗) (with or without the
addition of FL ,τ or (FL ,τ )<,>) demands a FF F̃2 sig-
nificantly larger than the LQCD calculations by a factor
∼ 1.5 − 2, i.e. well beyond the differences among the
individual LQCD results.

• The large value of F̃2, required by the inclusion of the
experimental value of R(D∗) (either with or without
(FL ,τ )<,>) produces values of various τ -observables,
which may differ significantly with respect to the cor-
responding LQCD predictions, namely (see, e.g., the last
two rows of Table 2): ≃ 1.5σ for R(D∗), ≃ 3.3σ for
FL ,τ , ≃ 2.8σ for (FL ,τ )>, ≃ 3.9σ for (FL ,τ )<, ≃ 2.6σ

for Pτ (D∗), ≃ 2.7σ for AFB,τ and ≃ 3.0σ for A1c,τ .

123

however, it turns out that BelleII23 is the most precise dataset and dominates when combined with 
the Belle18 and Belle23 datasets

using as input only the angular coefficients from Belle23(Ji)

similar conclusion observed already for AFB, FL, A1c, . . .

Belle23(Ji) slope consistent with 
FNAL/MILC and HPQCD, and 

marginally consistent with 
JLQCD for F̃ 1(w)

F̃ 1(w)

g̃(w) f̃ (w)



what about the pseudoscalar FF  ?F2(w)



extraction of  from dataF̃ 2(w)
Martinelli, SS, Vittorio arXiv:2410.17974 
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Table2 Experimental values of R(D∗ ) [18], FL ,τ [3,19], (FL ,τ )<,> [3]
and Pτ (D∗) [20] compared with the results obtained within the SM
using the unitary BGL fit (46) of the (light-lepton) experimental ratios
Rn(x) plus selected τ -observables. The last two columns contain the
corresponding predictions for the forward-backward asymmetry AFB,τ
and the transverse asymmetry A1c,τ , respectively. The third row corre-
sponds to the case in which no τ -observables are included in the fitting

procedure; in this case the value of the BGL coefficient aF2
0 is simply

fixed by the KC (10). For all fits the value of the reduced χ2-variable
is χ2/Nd.o. f. ≃ 1.1 − 1.2.The last row shows the LQCD predictions
of the unitary DM method of Ref. [9] applied to all available LQCD
simulations of the hadronic FFs from FNAL/MILC [10], HPQCD [11]
and JLQCD [12] Collaborations. The LQCD results correspond to the
ones labelled “Combined” in Table 4 and 5 of Ref. [9]

R(D∗) FL ,τ (FL ,τ )> (FL ,τ )< Pτ (D∗) AFB,τ A1c,τ

Experiment 0.286 (12) 0.48 (9) 0.34 (8) 0.52 (8) −0.36 (54) – –

Only aF2
0 0.248 (1) 0.446 (4) 0.394 (5) 0.536 (4) −0.524 (4) 0.073 (15) −0.110 (4)

With R(D∗) 0.284 (10) 0.515 (18) 0.451 (16) 0.616 (19) −0.333 (48) −0.012(22) −0.096 (5)

With FL ,τ 0.265 (26) 0.474 (52) 0.420 (40) 0.564 (66) −0.44 (14) 0.056 (88) −0.104 (11)

With (FL ,τ )<,> 0.243 (14) 0.432 (30) 0.386 (22) 0.513 (41) −0.561 (83) 0.114 (61) −0.113 (7)

With R(D∗), FL ,τ 0.283 (10) 0.513 (18) 0.449 (16) 0.614 (19) −0.339 (48) −0.010 (22) −0.097 (5)

With R(D∗), (FL ,τ )<,> 0.277 (11) 0.500 (20) 0.438 (18) 0.600 (23) −0.372 (55) 0.003 (26) −0.099 (5)

LQCD 0.258 (5) 0.426 (8) 0.384 (5) 0.499 (12) −0.521 (6) 0.078 (8) −0.115 (2)

Fig. 6 Comparison of the reduced FF F̃2 = F2/ f (1) extracted within the SM from the (light-lepton) experimental ratios Rn(x) plus a single
selected τ -observable at a time with the individual LQCD results from FNAL/MILC [10], HPQCD [11] and JLQCD [12] Collaborations

• The precision of the values of the τ -observables other
than R(D∗), calculated using the extracted reduced FFs,
is significantly better than the one of the corresponding
experimental values.

• The inclusion of the experimental value of R(D∗) in
our fitting procedure dominates over the addition of the
experimental values of the other τ -observables.

The above findings indicates a difficulty in reproducing
simultaneously the experimental values of R(D∗) and of
the other τ -observables within the SM. In particular, we
have shown the presence of an important correlation among
R(D∗) and (FL ,τ )<,> and of a relevant anti-correlation
between R(D∗) and AFB,τ , a quantity not yet measured.

In Ref. [37] it was noticed that also FL ,µ is correlated with
R(D∗) (see also Ref. [38]). It is worth highlighting that, while
the latter effect is driven only by the FF F̃1(w), the former
one is determined by both F̃1(w) and F̃2(w).

The above issue concerning the consistency among vari-
ous τ -observables is strengthened in Fig. 8, where we show
the contour plots for the observables R(D∗), (FL ,τ )<,> and
Pτ (D∗), extracted within the SM from the light-lepton exper-
iments plus the experimental values of either R(D∗) or
(FL ,τ )<,>, and those corresponding to the LQCD predic-
tions, obtained by the unitary DM method of Ref. [9] applied
to all LQCD data.

Thus, any improvement in the current precision of the
experimental determinations of the τ -observables as well as

123

•  is the most precisely determined observable in the -sector 

• when  is included, the exps.+unitarity reduced FF  deviates from LQCD results by a factor of ~ 2

R(D*) τ

R(D*) F̃ 2(w)

similar results using simultaneously both  and  R(D*) FL,τ |<,>

R(D*) = 0.286 ± 0.012
FL,τ = 0.48 ± 0.09

(FL,τ)q2<7 GeV 2 = 0.52 ± 0.08
(FL,τ)q2>7 GeV 2 = 0.34 ± 0.08

exp. values
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Fig. 7 The same as in Fig. 6, but including in the fitting procedure besides the (light-lepton) experimental ratios Rn(x) also the experimental values
of R(D∗) and of either FL ,τ or (FL ,τ )<,>

Fig. 8 Comparison of the contours at 68% probability for the observables R(D∗), (FL ,τ )<,> and Pτ (D∗), extracted within the SM from the
light-lepton experiments plus the experimental values of either R(D∗) or (FL ,τ )<,>, with the corresponding LQCD predictions, obtained by the
unitary DM method of Ref. [9] applied to all available LQCD FFs from Refs. [10–12]

a first-time determination of the forward-backward AFB,τ

and transverse A1c,τ asymmetries, will be crucial to learn
more on the suggested inconsistency found within the SM

between the experimental values of R(D∗) and of the other
τ -observables.

In order to use our results for further phenomenological
analyses we have collected in Appendix D the mean values

123

contour plots for -lepton observablesτ
Martinelli, SS, Vittorio arXiv:2410.17974 

• some tension between   and  

• we found a strong correlation between   and  (not yet measured)
R(D*) (FL,τ)<,>

R(D*) AFB,τ

R(D*) = 0.286 ± 0.012
(FL,τ)q2<7 GeV 2 = 0.52 ± 0.08
(FL,τ)q2>7 GeV 2 = 0.34 ± 0.08

Pτ(D*) = −0.38 ± 0.51+0.21
−0.16

exp. valuescontour plot at 68% probability 

R(D*)

R(D*) R(D*)

(F
L,

τ)
>

(F
L,

τ)
<
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Table 7 The same as in Table6, but in the case of the theoretical predictions of the unitary DM method of Ref. [9] applied to all available LQCD
simulations of the hadronic FFs from FNAL/MILC [10], HPQCD [11] and JLQCD [12] Collaborations

AFB,ℓ FL ,ℓ A1c,ℓ R(D∗) FL ,τ (FL ,τ )> (FL ,τ )< Pτ (D∗) AFB,τ

AFB,ℓ 0.2512 (102) 1.0000 − 0.7346 − 0.1298 0.4214 − 0.7205 − 0.6951 − 0.7367 − 0.5216 0.9692

FL ,ℓ 0.4747 (149) − 0.7346 1.0000 0.7667 − 0.7387 0.9722 0.9129 0.9818 0.8807 − 0.7761

A1c,ℓ − 0.1967 (70) − 0.1298 0.7667 1.0000 − 0.6611 0.7408 0.6791 0.7419 0.7853 − 0.2243

R(D∗) 0.2581 (48) 0.4214 − 0.7387 − 0.6611 1.0000 − 0.6548 − 0.5678 − 0.6240 − 0.7758 0.4450

FL ,τ 0.4257 (77) − 0.7205 0.9722 0.7408 − 0.6548 1.0000 0.9816 0.9922 0.8868 − 0.7989

(FL ,τ )> 0.3843 (45) − 0.6951 0.9129 0.6791 − 0.5678 0.9816 1.0000 0.9584 0.8332 − 0.7922

(FL ,τ )< 0.4992 (125) − 0.7367 0.9818 0.7419 − 0.6240 0.9922 0.9584 1.0000 0.8736 − 0.8016

Pτ (D∗) − 0.5208 (59) − 0.5216 0.8807 0.7853 − 0.7758 0.8868 0.8332 0.8736 1.0000 − 0.6319

AFB,τ 0.0781 (79) 0.9692 − 0.7761 − 0.2243 0.4450 − 0.7989 − 0.7922 − 0.8016 − 0.6319 1.0000

Appendix E: Ratios of HQET-inspired form factors

In the literature it is common to consider the following ratios
among the HQET-inspired FFs (50):

R0(w) = 1
1 + r

[
1 + w + (rw − 1)

hA2(w)

hA1(w)
+ (r − w)

hA3 (w)

hA1 (w)

]
,

R1(w) = hV (w)

hA1(w)
,

R2(w) = rhA2 (w)+ hA3(w)

hA1(w)
. (E1)

All the above ratios become equal to unity in the limit of
infinite heavy-quark masses.

In Fig. 11 we show the results for the ratios R0(w), R1(w)

and R2(w) corresponding to the FFs extracted within the SM
from the (light-lepton) experimental ratios Rn(x) plus the

Fig. 11 Comparison of the ratios R0(w), R1(w) and R2(w), defined
by Eqs. (E1), corresponding to the reduced FFs extracted within the
SM from the (light-lepton) experimental ratios Rn(x) plus the exper-
imental value of R(D∗), with the individual LQCD results from

FNAL/MILC [10], HPQCD [11] and JLQCD [12] Collaborations, as
well as with the LQCD predictions, obtained by the unitary DM method
of Ref. [9] applied to all available LQCD data
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in the HQ limit one has:    
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ratio of HQET FFs
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determination of  from |Vcb | Γ
Martinelli, SS, Vittorio arXiv:2410.17974 determination of  using the total decay rate |Vcb f (1) | Γexp(B → D*ℓνℓ)

Γ(B → D*ℓνℓ) →mℓ=0
4η2

EWmBm2
D*G2

F

3(4π)3
|Vcb f (1) |2 [ H̃ ++ + H̃ −− + H̃ 00]

where  from PDG ’24, while  can be calculated using the reduced FFs 

 obtained either from the exps+unitarity fit or from LQCD

Γexp = 21.74 (51) ⋅ 10−15 GeV H̃ ++,−−,00

g̃, f̃, F̃ 1
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Fig. 9 Comparison of the HQET-inspired FFshV (w),hA1 (w),hA2 (w)
and hA3 (w), divided by hA1 (1) = f (1)/(2mB

√
r), extracted within

the SM from the (light-lepton) experimental ratios Rn(x) plus the
experimental value of R(D∗), with the individual LQCD results from

FNAL/MILC [10], HPQCD [11] and JLQCD [12] Collaborations, as
well as with the LQCD predictions, obtained by the unitary DM method
of Ref. [9] applied to all available LQCD data

Table 3 Results for the quantity |Vcb f (1)| obtained (see text) adopt-
ing the experimental total decay rate !exp = 21.74(51) · 10−15 GeV
from PDG [13] and using the reduced FFs extracted from the anal-
ysis of the ratios Rn(x) corresponding separately to the Belle18 [6],
Belle23 [7] and BelleII23 [8] experimental data sets. The row denoted by
Belle18+Belle23+BelleII23 corresponds to the results obtained using
simultaneously all the three experimental data sets. The last column
shows the value of |Vcb| obtained using for f (1) the value (49)

|Vcb f (1))| · 103 GeV−1 |Vcb | · 103

Belle18 222.9 (8.5) 38.1 (1.5)

Belle23 234.2 (9.3) 40.1 (1.6)

BelleII23 236.5 (5.6) 40.5 (1.0)

Belle18 + Belle23 + BelleII23 231.8 (4.6) 39.7 (0.8)

imental and theoretical information on B-meson semilep-
tonic decays, as described in details in Ref. [16].

We finally comment on the difference between the result
|Vcb| = 39.92(64) · 10−3 of Ref. [9] and the value |Vcb| =
41.6(1.1) · 10−3 of Table 4. Both determinations are based
on the use of the same LQCD FFs. They however rely on
different data: on the one hand the differential distributions

Table 4 Results for the quantity |Vcb f (1)| obtained (see text) adopt-
ing the experimental total decay rate !exp = 21.74(51) · 10−15 GeV
from PDG [13] and using the hadronic FFs obtained in Ref. [9] by the
DM method using as inputs the LQCD results from FNAL/MILC [10],
HPQCD [11] and JLQCD [12] Collaborations. The row denoted by
LQCD corresponds to the FFs obtained in Ref. [9] by the DM method
using all available LQCD FFs. The third column shows the value of
f (1) corresponding to the various sets of FFs, while the corresponding
values of |Vcb| are presented in the last column

|Vcb f (1)| · 103 GeV−1 f (1) GeV−1 |Vcb | · 103

FNAL/MILC 253.2 (9.2) 5.951 (91) 42.6 (1.7)

HPQCD 253.4 (11.7) 5.885 (94) 43.1 (2.1)

JLQCD 231.3 (9.5) 5.776 (90) 40.0 (1.8)

LQCD 243.2 (5.9) 5.845 (50) 41.6 (1.1)

data and on the other hand the total decay rate data. We
suggest that the reason may be traced back to the difference in
the momentum dependence of the FF F1(w) visible in Fig. 3
(see also Refs. [10,21,32]).
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data and on the other hand the total decay rate data. We
suggest that the reason may be traced back to the difference in
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using  f (1) |LQCD = 5.845 (50) GeV−1

bin-per-bin analysis of the same datasets within DM 

 

Martinelli, SS, Vittorio arXiv:2310.03680 

|Vcb | ⋅ 103 = 39.92 (64)

Bayesian inference based analysis 

 

Bordone, Jüttner arXiv:2406.10074 

|Vcb | ⋅ 103 = 40.42 (71)

UTfit prediction arXiv:2212.03894 

|Vcb | ⋅ 103 = 42.19 (48)

~ updated inclusive value (Fael et al. arXiv:2212.03894) 

|Vcb | ⋅ 103 = 42.00 (47)

larger values due to the LQCD versus exp. 
slope of F1(w)



conclusions

• systematic effects on the lattice results for the FFs obtained by different collaborations are not yet under full 

control ====> different slopes of  between JLQCD and (FNAL/MILC, HPQCD) 

• different methods for extrapolating the FFs in the whole kinematical range are consistent 

• the (normalized) single differential decay rates  with  are available from 

light-lepton experiments (Belle18, Belle23, BelleII23). They are independent of  and the angular ones 

depend in general on five hadronic parameters  both in the SM and beyond 

• differences of  among the various experiments as well as with LQCD predictions 

• the angular coefficients , determined by Belle, are consistent with LQCD predictions 

• extraction of (reduced) hadronic FFs using unitary BGL fits applied to light-lepton and -lepton exp. data 

( ) with minimal input from theory: possible and independent of  

• while the inclusion of  leads to a pseudoscalar FF  compatible with LQCD results, the 

inclusion of  requires instead a much larger  (by a factor of ~ 2)  

• thus:  (or ) is problematic within the SM

F1

(1/Γ) d Γ/dx x = {w, cosθℓ, cosθv, χ}

|Vcb |

{η, η′ , δ, ϵ, ϵ′ }

{η, η′ , δ, ϵ, ϵ′ }

Ji(w)

τ

R(D*) and FL,τ |Vcb |

(FL,τ)<,> |exp F2(w)

R(D*) |exp F2(w)

R(D*) F2

• a precise determination of the HQET ratio  is crucial for understanding the slope of  

• accurate determinations of  will be very valuable for assessing the tension with the SM

R2(1) F1

(FL,τ)<,> and AFB,τ

outlooks
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0.1 0.2 0.3 0.4
R(D*)

BaBar, had. tag
 0.018± 0.024 ±0.332 

, had. tagaBelle
 0.015± 0.038 ±0.293 

, (hadronic tau)bBelle
 0.027± 0.035 ±0.270 

, sl.tagcBelle
 0.014± 0.018 ±0.283 

aLHCb
 0.024± 0.018 ±0.281 

, (hadronic tau)bLHCb
 0.020± 0.012 ±0.267 

, had.tagaBelle II
 0.031± 0.040 ±0.267 

cLHCb
 0.085± 0.081 ±0.402 

, sl.tagbBelle II
 0.018± 0.034 ±0.306 

Average 
 0.012±0.288 

SM average 
 0.005±0.254 

EPJC 80 (2020) 2, 74 
 0.006±0.247 

PRD 106 (2022) 096015 
 0.003±0.249 

JHEP 01 (2024) 022 
 0.012±0.258 

PRL 123 (2019) 9,091801 
 0.005±0.253 

PLB 795 (2019) 386 
 0.007±0.254 

EPJC 84 (2024) 400 
 0.009±0.262 HFLAV

Spring 2025

differences ≃ 1.8 σ

experimental average 
SM average

updated HFLAV table of 
experimental and SM 

values of R(D*)



unitarity constraints
BGL z-expansion of the reduced FFs

unitarity constraints for  decays B → D*ℓνℓ

Ng

∑
i=0

[a(g)
i ]2 ≤ 1

Nf

∑
i=0

[a( f )
i ]2 +

NF1

∑
i=0

[a(F1)
i ]2 ≤ 1

NF2

∑
i=0

[a(F2)
i ]2 ≤ 1

g̃(w) ≡
g(w)
f (1)

=
χ̃1−

ϕg(z)Bg(z)

Ng

∑
i=0

ag
i zi

f̃ (w) ≡
f (w)
f (1)

=
χ̃1+

ϕf (z)Bf (z)

Nf

∑
i=0

a f
i zi

F̃ 1(w) ≡
F1(w)
f (1)

=
χ̃1+

ϕF1
(z)BF1

(z)

NF1

∑
i=0

aF1
i zi

F̃ 2(w) ≡
F2(w)
f (1)

=
χ̃0+

ϕF2
(z)BF2

(z)

NF2

∑
i=0

aF2
i zi

reduced susceptibilities χ̃1−,1+,0+ ≡
χ1−,1+,0+

f 2(1)

Martinelli, SS, Vittorio arXiv:2105.07851 

f (1) = 5.845 (50) GeV−1
Martinelli, SS, Vittorio arXiv:2310.03680

[DM method applied to all LQCD results from 
FNAL/MILC, HPQCD, JLQCD]

χ1− = (5.84 ± 0.44) ⋅ 10−4 GeV−2

χ1+ = (4.69 ± 0.30) ⋅ 10−4 GeV−2

χ0+ = (21.9 ± 1.9) ⋅ 10−4 GeV−2

no. of parameters with two KCs +  f̃ (1) = 1

Nparms = Ng + Nf + NF1
+ NF2

+ 1
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where

Ĥ++,−−,00(n) =
∫ wn

wn−1

dw
√
w2 − 1(1 − 2rw + r2) H2

+,−,0(w).

(A6)

Appendix B: Asymmetries in the light-lepton sector

The results for the asymmetries AFB , FL , A1c, A2c and A3c,
given in Eqs. (22)–(26), are collected in Table 5 and visual-
ized as contour plots in Fig. 10, including the correlations
among the various quantities. For completeness, we collect

in Table 5 also the results obtained for the three hadronic
parameters η, δ and ϵ, given in Eqs. (19)–(21).

All the results compare positively (i.e., differences less
than one standard deviation) with the corresponding results
from Ref. [1], where the SM and the massless lepton limit are
not assumed. In particular, the differences between the three
asymmetries AFB , FL and A1c, obtained using simultane-
ously all the three experimental data sets, and those corre-
sponding to the LQCD predictions are above the 2σ level and
may reach ≃ 3.3σ in the case of FL . On the contrary, they
do not exceed ≃ 1.4σ in the case of the individual Belle23
data set.

Table 5 The same as in Table1, but for the (light-lepton) asymmetries
AFB , FL , A1c, A2c and A3c, given in Eqs. (22)–(26), and for the three
hadronic parameters η, δ and ϵ, given in Eqs. (19)–(21). The LQCD

results for AFB and FL correspond to the ones labelled “Combined” in
Table 4 of Ref. [9]

AFB FL A1c A2c A3c η δ ϵ

Belle18 0.218 (10) 0.530 (7) − 0.177 (9) − 0.198 (16) − 0.423 (9) 0.885 (24) − 0.549 (28) 0.335 (18)

Belle23 0.231 (13) 0.502 (12) − 0.187 (13) − 0.197 (19) − 0.409 (11) 0.995 (50) − 0.615 (37) 0.373 (32)

BelleII23 0.200 (10) 0.528 (5) − 0.188 (7) − 0.202 (11) − 0.417 (5) 0.895 (17) − 0.507 (26) 0.356 (14)

Belle18 + Belle23 + BelleII23 0.224 (6) 0.527 (4) − 0.178 ( 5) − 0.189 (8) − 0.424 ( 4) 0.898 (13) − 0.567 (15) 0.339 (10)

LQCD 0.251 (10) 0.475 (15) − 0.197 (7) − 0.191 (6) − 0.433 (3) 1.109 (66) − 0.707 (48) 0.415 (26)

Fig. 10 The same as in Fig. 4, but for the observables AFB , FL and A1c (see Eqs.(22)–(24))
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contour plots for light-lepton asymmetries
Martinelli, SS, Vittorio arXiv: 2410.17974 

differences at the  level, except for   at  level ≈ 2σ FL 3.3σ

AFB AFB

AFBAFB
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r), extracted within

the SM from the (light-lepton) experimental ratios Rn(x) plus the
experimental value of R(D∗), with the individual LQCD results from

FNAL/MILC [10], HPQCD [11] and JLQCD [12] Collaborations, as
well as with the LQCD predictions, obtained by the unitary DM method
of Ref. [9] applied to all available LQCD data

Table 3 Results for the quantity |Vcb f (1)| obtained (see text) adopt-
ing the experimental total decay rate !exp = 21.74(51) · 10−15 GeV
from PDG [13] and using the reduced FFs extracted from the anal-
ysis of the ratios Rn(x) corresponding separately to the Belle18 [6],
Belle23 [7] and BelleII23 [8] experimental data sets. The row denoted by
Belle18+Belle23+BelleII23 corresponds to the results obtained using
simultaneously all the three experimental data sets. The last column
shows the value of |Vcb| obtained using for f (1) the value (49)

|Vcb f (1))| · 103 GeV−1 |Vcb | · 103

Belle18 222.9 (8.5) 38.1 (1.5)

Belle23 234.2 (9.3) 40.1 (1.6)

BelleII23 236.5 (5.6) 40.5 (1.0)

Belle18 + Belle23 + BelleII23 231.8 (4.6) 39.7 (0.8)

imental and theoretical information on B-meson semilep-
tonic decays, as described in details in Ref. [16].

We finally comment on the difference between the result
|Vcb| = 39.92(64) · 10−3 of Ref. [9] and the value |Vcb| =
41.6(1.1) · 10−3 of Table 4. Both determinations are based
on the use of the same LQCD FFs. They however rely on
different data: on the one hand the differential distributions

Table 4 Results for the quantity |Vcb f (1)| obtained (see text) adopt-
ing the experimental total decay rate !exp = 21.74(51) · 10−15 GeV
from PDG [13] and using the hadronic FFs obtained in Ref. [9] by the
DM method using as inputs the LQCD results from FNAL/MILC [10],
HPQCD [11] and JLQCD [12] Collaborations. The row denoted by
LQCD corresponds to the FFs obtained in Ref. [9] by the DM method
using all available LQCD FFs. The third column shows the value of
f (1) corresponding to the various sets of FFs, while the corresponding
values of |Vcb| are presented in the last column

|Vcb f (1)| · 103 GeV−1 f (1) GeV−1 |Vcb | · 103

FNAL/MILC 253.2 (9.2) 5.951 (91) 42.6 (1.7)

HPQCD 253.4 (11.7) 5.885 (94) 43.1 (2.1)

JLQCD 231.3 (9.5) 5.776 (90) 40.0 (1.8)

LQCD 243.2 (5.9) 5.845 (50) 41.6 (1.1)

data and on the other hand the total decay rate data. We
suggest that the reason may be traced back to the difference in
the momentum dependence of the FF F1(w) visible in Fig. 3
(see also Refs. [10,21,32]).
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HQET-inspired FFs

in the HQ limit one has:    hV(w) = hA1
(w) = hA3

(w) = ξIW(w), hA2
(w) = 0

 depend on hV(w) ∝ g(w), hA1
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(w) f (w), F1(w), F2(w)

h̃i(w) ≡
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Martinelli, SS, Vittorio arXiv: 2410.17974 
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