Semileptonic B decays – results and plans at Belle II Christoph Schwanda (HEPHY Vienna)

Semileptonic B decays at the junction of experiment and theory Torino, Jun 12-13, 2025

Belle II @ SuperKEKB

- Luminosity frontier experiment to search for Physics beyond the Standard Model
 - e^+e^- asymmetric collision at the $\Upsilon(4S)$
 - High current / nano-beams, challenging background conditions
- Luminosity targets to achieve physics goals:

$$\mathscr{L} = 6 \times 10^{35} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}, \,\int \mathscr{L}dt =$$

The Belle II detector

Updated on 2025/01/06 16:16 JST

New luminosity record Dec 27, 2024

2025c operation schedule

[Baseline]

	4	5	6	7	8
FY2024			← Tsu	kuba Hall	roof renov
FY2025		10 m	onths	shutd	own Port
FY2026 Assuming the solution as FY2	ame 2025				

Faint colors for the machine start-up time

MR start at Nov 5 at the earliest

What I'm going to talk about

- New Belle II $B \to D\ell\nu$ result and impact on $|V_{ch}|$
 - Shown at Moriond EW 2025, collaboration paper in '48h display'
- My view on $|V_{ch}|$ inclusive and what we plan to do about it
 - Towards an untagged measurement of the inclusive semileptonic branching fraction

What I'm not going to talk about

https://hflav-eos.web.cern.ch/hflav-eos/semi/spring25/html/RDsDsstar/RDRDs.html

Semileptonic *B* decays **Determination of the CKM elements** $|V_{cb}|$ and $|V_{ub}|$

- SL B decays are studied to determine the CKM elements $|V_{ch}|$ and $|V_{\mu h}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of SM rates for ultrarare decays such as $B_s \rightarrow \mu \nu$ and $K \rightarrow \pi \nu \nu$
- The determinations can be
 - *Exclusive* from a single final state
 - *Inclusive* sensitive to all SL final states

	Experiment	Theory
Exclusive V _{cb}	$B \rightarrow Dlv, D^*lv$ (low backgrounds)	Lattice QC light cone s rules
Inclusive V _{cb}	B → Xlv (higher background)	Operator pro expansio

Inclusive/exclusive anomaly

~3 σ difference between *inclusive* and *exclusive* $|V_{xb}|$

"Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth."

Sir Arthur Conan Doyle a.k.a. Sherlock Holmes

$|V_{ch}|$ exclusive status circa 2020

- Dominated by $B^0 \to D^{*-} \ell^+ \nu$
 - $|V_{cb}| = (38.4 \pm 0.2 \pm 0.6 \pm 0.6) \cdot 10^{-3} \sim 2\%$ uncertainty [PRD 100, 052007 (2019)]
- Extractions from $B \rightarrow D\ell\nu$ significantly less precise
 - $|V_{ch}| = (39.86 \pm 1.33) \cdot 10^{-3} \sim 3\%$ uncertainty [PRD 93, 032006 (2016)]

Possible issues $B^0 \rightarrow D^{*-} \ell^+ \nu$

- Experimental
 - Slow pion from $D^{*+} \rightarrow D^0 \pi^+$
 - Only one isospin state accessible (Coulomb correction)
- Theory
 - Three form-factors
 - Uncertainties BGL truncation

13

Possible issues tagging

high signal yield (+) high backgrounds (-) poor neutrino reconstruction (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed

signal yield O(10³) lower (-) low backgrounds (+) good neutrino reconstruction (+) tag calibration (-)

Hadronic tagging at Belle II

Comput Softw Big Sci (2019) 3: 6.

- The hadronic FEI employs over 200 boosted decision trees to reconstruct 10000 B decay chains
 - $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at low purity (about 50% increase with respect to the Belle tag)

$$M_{bc} = \sqrt{E_{beam}^2 / 4 - (p_{B_{tag}}^{cm})^2} > 5.27 \; {
m GeV}/c^2$$

Thus we need...

Belle II $B \rightarrow D\ell\nu$ untagged [Moriond EW 2025, paper to be submitted]

Signal reconstruction

• The Belle II measurement is performed using B^0 and B^+ decays without explicitly reconstructing the partner *B* meson from the $Y(4S) \rightarrow B\overline{B}$ decay

 $\circ \quad D^{-} \to K^{+} \pi^{-} \pi^{-} \text{ and } D^{0} \to K^{-} \pi^{+}$

The signal is extracted using the cos θ_{BY}
 variable where Y represents the DI system

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - M_B^2 - l}{2|p_B^*||p_Y^*|}$$

Preliminary

Binning in $w = v \cdot v'$

 $\mathcal{B}(B \to D^- \ell^+ \nu)$ $\mathcal{B}(B \to \bar{D}^0 \ell^+ \nu)$

The signal is extracted from a 2D binned template fit of $\cos\theta_{RY}$: w split in 10 bins each The fit is performed simultaneously on 4 separate channels D^0e^2 , $D^0\mu^2$, D^+e^2 and $D^+\mu^2$ to extract the individual branching fractions and a lepton flavour universality test

Determination of $|V_{ch}|$

- The differential decay rate $\Delta\Gamma/\Delta w$ in 10 w bins is obtained from the same fit
- QCD constraints \rightarrow extraction of $|V_{cb}|$ and BCL form factor parameters

The obtained values of $\Delta\Gamma/\Delta w$ are fitted to the differential rate expressed using the Bourrely, Caprini, Lellouch (BCL) form factor parametrisation with a χ^2 fit with lattice

$= (39.2 \pm 0.8) \times 10^{-3}$

 $|V_{cb}|_{\text{excl.}} = (39.77 \pm 0.46) \times 10^{-3} \quad |V_{cb}|_{\text{incl.}} = (41.97 \pm 0.48) \times 10^{-3}$

Result for BCL expansion

$$r = M_D/M_B$$
 $G^2(w) = \frac{4r}{(1+r)^2} f_+^2(w)$ $f_0(w_{\max}) = f_+(w_{\max})$

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/M_{+}^{2}} \sum_{k=0}^{N-1} a_{k} \left[z^{k} - (-1)^{k-N} \frac{k}{N} z^{N} \right]$$

Values

$$\begin{array}{rl} a_0^+ & 0.8959(92) \\ a_1^+ & -8.03(15) \\ a_2^+ & 49.3(31) \\ a_0^0 & 0.7813(73) \\ a_1^0 & -3.38(15) \end{array}$$

Measured parameters of the N = 3 BCL expansion

BCL expansion: <u>PRD 79,</u> 013008 (2009)

$$f_0(q^2) = \frac{1}{1 - q^2/M_0^2} \sum_{k=0}^{N-1} b_k z^k$$

Correlation coefficients

1	0.26	-0.38	0.95	0.51
	1	0.17	0.33	0.86
		1	-0.31	0.16
			1	0.47
				1

Preliminary

Systematic uncertainty $|V_{ch}|$

Fractional contributions to the total relative uncertainty of $|V_{cb}|$

 $|V_{cb}| = (39.2 \pm 0.4 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \pm 0.5 \text{ (theo.)}) \times 10^{-3}$

Preliminary

Uncertainty	[%]
	0.9
	0.5
	0.5
	0.1
	0.3
	0.3
	0.5
	0.3
	0.2
	0.5
	0.3
	0.4
	0.1
	0.5
	0.3
	0.1
	1.5
	1.2
	0.4
	1.3
	2.1
	Uncertainty

Electroweak and QED corrections

Short-distance electroweak corrections are well understood • $\eta_{FW} = (1.0066 \pm 0.0002) [Nucl. Phys. B 196, 83 (1982)]$

Long-distance QED corrections arise from photon exchange between the D meson and the charged lepton (Coulomb correction)

• $\delta_{Coulomb} = (1 + \alpha \pi) = 1.023 [Phys. Rev. D 41, 1736 (1990)]$

A nuisance parameter θ is introduced to take into account the isospin-breaking Ο effect of the Coulomb correction which modifies the B lifetime ratio

 $\quad \quad \tau_{0+} \to \tau_{0+}(1 + \alpha \pi \theta)$

This is an important information that cannot be accessed in $B \rightarrow D^* I v$ Ο measurements where the D^{*} is usually reconstructed via D^{*} (\rightarrow D⁰ π^+)

Intermediate summary:

The goal of the research was reached but it did not bring us closer to understanding the issue...

Another idea is that the problem lies with the...

Inclusive semileptonic BR

$|V_{ch}|$ from inclusive decays

$$\mathbf{B} \rightarrow \mathbf{X} | \mathbf{v} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 (1 + 1)^{1/2} |V_{cb}|^2 |V_{cb}$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative) **C**_i: coefficients (perturbative)

	Kinetic	1S
	[JHEP 1109 (2011) 055]	[PRD70, 094017 (2004)]
O(1)	m _b , m _c	m _b
O(1/m² _b)	$μ^2_π$, $μ^2_G$	λ_1, λ_2
O(1/m³ _b)	$ρ^3$ _D , $ρ^3$ _{LS}	ρ ₁ , τ ₁₋₃

• Parton-hadron duality \rightarrow the hadronic ME depend only on the initial state

Recent results for $|V_{ch}|$ inclusive **OPE-based** analyses

• E_{ℓ} and M_X^2 moments [M. Bordone, B. Capdevila, and P. Gambino, Phys. Lett. B 822 (2021) 136679]

• q^2 moments (\mathscr{B}_{SL} is input) [F. Bernlochner et al., JHEP 10 (2022) 068]

 $|V_{cb}| = (41.69 \pm 0.63) \times 10^{-3} \quad \mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.48 \pm 0.13)\%$

• E_{ℓ} , M_X^2 and q^2 moments [M. Bordone, B. Capdevila, and P. Gambino, Phys. Lett. B 822 (2021) 136679]

 $|V_{cb}| = (42.16 \pm 0.30(th) \pm 0.32(exp) \pm 0.25(\Gamma)) \times 10^{-3} \qquad \mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.66 \pm 0.15)\%$

 $|V_{cb}| = (41.97 \pm 0.27(\exp) \pm 0.31(\th) \pm 0.25(\Gamma)) \times 10^{-3} \quad \mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.63 \pm 0.15)\%$

Rescaling JHEP 10 (2022) 068 to the same $\mathscr{B}_{\rm SL}$

• q^2 moments (\mathscr{B}_{SL} is input) [F. Bernlochner et al., JHEP 10 (2022) 068]

$\mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.48 \pm 0.13)\%$

 $\mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.63 \pm 0.19)\%$

Partial BR measurements Inputs to global analyses

$E_0[\mathrm{GeV}]$	$\mathcal{B}[10^{-2}]$
0.6	$10.30~\pm~0.06~\pm~0.24$
0.8	$9.61~\pm~0.05~\pm~0.20$
1.0	$8.65~\pm~0.04~\pm~0.17$
1.2	$7.31~\pm~0.04~\pm~0.14$
1.5	$4.79~\pm~0.03~\pm~0.09$

(2004 table)

 Δ BR × 10⁻²

Belle

Hadronic tag [Phys.Rev. D75 (2007) 032001]

$E_{\rm cut}[{\rm GeV}]$	$\Delta \mathcal{B} \; [10^{-2}]$
0.4	$10.44 \pm 0.19 \pm 0.22$
0.6	$10.07\pm0.18\pm0.21$
0.8	$9.42 \pm 0.16 \pm 0.19$
1.0	$8.41 \pm 0.15 \pm 0.17$
1.2	$7.11 \pm 0.13 \pm 0.14$
1.4	$5.52 \pm 0.11 \pm 0.11$
1.6	$3.71\pm0.09\pm0.07$
1.8	$1.93 \pm 0.06 \pm 0.04$
2.0	$0.53 \pm 0.02 \pm 0.02$

Phys.Rev.D 95 (2017) 7, 072001 BaBar publication on $|V_{ub}|$ inclusive

Revisiting the measurement of $\mathcal{B}_{\rm SL}$

- There is ample motivation for revisiting the measurement of the inclusive, semileptonic BR measurement
 - Only few recent measurements, issue with consistency?
 - $\mathcal{B}_{\rm SL}$ has a very significant impact on the value of $\mid V_{cb} \mid$ inclusive
- A new measurement should be inclusive to avoid issues with tagging
 - Requires excellent understanding of backgrounds and detector systematics

5

Belle II $B \rightarrow X \ell \nu$ inclusive [arXiv:2111.09405] **Preliminary conference result**

double-tag measurement a la BaBar?

Pure inclusive measurement seems hard due to significant backgrounds,

Summary

- $|V_{ch}|$ exclusive
 - confidence in the present value for $|V_{ch}|$ exclusive
 - spectral data will be uploaded to HepData prior to submission
- $|V_{ch}|$ inclusive
 - could play a major role in understanding the exclusive-inclusive puzzle
 - results soon as this will be a challenging task

• The new Belle II measurement of $B \to D\ell \nu$ shows no major surprise but strengthens the

• The collaboration paper should be submitted to the journal in a couple of days, detailed

• Imho the inclusive, semileptonic BR did not receive enough experimental scrutiny though it

• Work towards an untagged measurement is underway in my group but please don't expect

Backup