N=50 core breaking states and collectivity approaching ⁷⁸Ni

A. Gottardo, J.J. Valiente-Dobon, F. Angelini, D. Stramaccioni for the collaboration

Physics around the N=50 gap

Z=40 Zr91 Zr92 Zr93 Zr90 Y89 And the neutrons? E (MeV) Sr84 Sr86 Sr87 Sr88 Proton single particles d_{3/2} Rb85 Rb87 (50) **B**9/2 -7,121 **g**_{7/2} Kr78 Kr80 Kr82 Kr83 Kr84 Kr86 Br79 Br81 Br85 S_{1/2} Se77 Se82 Se76 Se78 Se80 Se84 (40) d_{5/2} As75 As83 -11,831 (p_{1/2}) Z=32 Ge74 Ge76 Ge82 N=50 -13,233 **p**_{3/2} Ga81 **f**_{5/2} Z=30 -14,386 Zn 80 **g**_{9/2} (28) Cu79 From Ji et Wildenthal Z=28 Ni70 Ni71 Ni72 Ni73 Ni74 Ni75 Ni76 Ni77 **Ni78** Phys. Rev. C 38, 2849 (1988) 50

The N= 50 gap: how to measure probe ?

- The shell gap (and s.p. energies) is not an observable
 - «Mass gap» from mass measurements
 - Spectroscopic gap» from core- breaking states

N=50 gap from mass measurements

Graphical method by K. Heyde et al.: PLB176, 189 (1986)

The shell gap N=50 is **overestimated** (~300 keV) by the $S_n(N+1)-S_n(N)$ difference

- Mass gap: from measured Sn values
- Quadratic behaviour of the shell gap around Z=32

N=50 from core-breaking states

- $\pi f_{5/2} p_{3/2} p_{1/2}$ space: max 4⁺ with seniority 2
- 6⁺ with Z=28 core breaking or for more seniority 4
- $v g_{9/2}$ -d_{5/2} core breaking: up to 7⁺

J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)
S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008)
K. Heyde et al., Phys. Lett. B 176, 255 (1986).
T. Rzaca-Urban et al., Phys. Rev. C 76, 027302 (2007)

- Spectroscopic gap: from $5^+, 6^+, 7^+$ levels which are a $g_{9/2}$ - $d_{5/2}$ N=50 core excitation
- Spectroscopy shows a decrease until Z=31

Lifetimes as probes of configuration change

- Problem: the 5⁺,6⁺ states are really representatives of a N=50 core break ?
- If they are, they should have suppressed decays to the «normal» proton state 4⁺

Rule of thumb:

- If going from a N=50 core broken to a N=50 core closed: B(M1) \approx 10⁻²-10⁻³ μ_N^2 B(E2) \approx few-30 e²fm⁴
- If going from a N=50 core closed to a N=50 core closed: B(M1)≈1 μ_N^2 B(E2)≈ 100-500 e²fm⁴

Reference for B(E2) in this region: 1 Wu \approx 20-24 e²fm⁴

Fusion-fission experiments at GANIL (and LNL soon...)

- Heavy beam (²³⁸U, ²⁰⁸Pb), 0.2-2 pnA
- Light target (⁹Be, ¹²C, ¹⁸O...), 1-2 mg/cm²
- Fission fragment detection at 20-28 deg
- γ-ray dectection with AGATA
- Plunger and/or DSAM lifetime possbile
- Fission mechanism can be studied at the

Results and Spectroscopy

- Fusion-fission reactions tend to populate medium-spin states (6-8 unit of angular momentum)
- Many isotopes populated at the same time: event-by-event Z and A identification

Excitation energy (MeV)

3

2

0

Lifetimes: results (I): N=50 isotones

A. Gottardo, C. Delafosse, D. Verney et al., submitted to PRC

Lifetimes: results (II) : N=50 isotones

A. Gottardo, C. Delafosse, D. Verney et al., in preparation

Lifetime results (III): N=51 odd-odd nuclei Br84 Se83 Counts Z 1800 1408 keV ⁸⁴As ⁸⁴As 1600 As82 1400 250 1200 1000 Ge81 1408 keV lifetime 800 determination with 600 Ga80 400 sum of three distances 200 100 200 Montecarlo Summed spectrum results D. Dal Santo, G. Valerin University of Padova students Nuclide E_{γ} [keV] $\tau[ps]$ $B(\mathbf{E} \mid \mathbf{M} \mid \boldsymbol{\lambda})$ [W.u.] Transition 313 keV lifetime fit $5^- \rightarrow 4^-$ (M1) 7.4 ± 1.8 ⁸⁶Br $1.2\pm0.3\cdot10^{-1}$ 331 <u>د</u> 1.1 $12.6^{+8.2}_{-4.5}$ $3.5^{+1.2}_{-2.2} \cdot 10^{-1}$ $8^+ \to 7^+$ (M1) 194 ⁸⁴As 1.05 ⁸⁴Br $1.4^{+0.9}_{-1.4} \cdot 10^{-4}$ $4.1^{+5.4}_{-2.8}$ 972 $7^+ \to 7^-$ (E1) $25.9^{+18.1}_{-8.8}$ $8.2^{+2.8}_{-5.7}$ $\cdot 10^{-3}$ 530 $7^- \to 6^- (M1)$ 0.95 ⁸⁴As scheme $7.2^{+4.5}_{-2.0}$ $5.9^{+2.4} \cdot 10^{1}$ $7^+ \to 5^- (M2)$ 1408 0.9 ⁸⁴As $5^- \rightarrow 4^- (M1) 43 \pm 22$ built based on $2.4 \pm 1.2 \cdot 10^{-2}$ 313 0.85 $8.9^{+4.0}_{-5.6} \cdot 10^{0}$ $3.8^{+2.4}_{-1.7}$ 800 1019 $6^- \to 4^-$ (E2) $\pi f_{5/2}^{-1} v d_{5/2}$ 0.8 $\gamma\gamma$ coincidences: 9.0 ± 3.0 218 unknown 0.75 tion Energy (keV) 278 0.7 6.6 ± 2.0 ^{82}As unknown $9.8^{+5.5}_{-3.4}$ 0.65 656 unknown 0.6 410 unknown > 4010 12 14 16 18 20

⁸⁰Ga

401

unknown

 $12.5^{+9.4}_{-4.7}$

time of flight [ps]

Kr86 Br85 Br86 Se84 Se85 As83 As84 Ge82 Ge83 Ga81 Ga82 Zn80

N=49 N=50 N=51

N=51: vd_{5/2}s_{1/2}- $\pi f_{5/2} p_{3/2} p_{1/2}$ coupling

⁷⁸Ni: the end of N=50 shell closure ?

F. Nowacki et al., Phys. Rev. Lett. 117, 272501 (2016)

F. Nowacki et al., Phys. Rev. Lett. 117, 272501 (2016)

Lifetimes to identify intruder components

• Monotonic increase of the B(E2) along N=52: no midshell maximum?

• Is the large B(E2) a signature of an intruder configuration in ⁸⁴Ge?

A pseudo-spin mechanism ?

Shape evolution beyond N=50

shape transition from prolate ^{87,89}Br to oblate ^{91,93}Br for both natural and non-natural parity bands

From prolate deformation ot γ softness from ⁸⁴Ge to ^{86,88}Ge, and from ⁸⁵As to ⁸⁷As. Rigid triaxiality also put forward

Phys. Rev. C 96, 011301R (2017) Phys. Rev. C 106, 014320 (2022)

AGATA-PRISMA @ LNL

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

• AGATA – PRISMA setup

	AGATA-VAMOS	AGATA-PRISMA	Improvement factor
Beam	238U @ 6.3 MeV/u, 25enA: 0.2 pnA at 28 degrees	238U @ 7.2 MeV/u: ~0.5 pnA at 28 degrees	~2
Dead Time	0.5kHz of trigger (no deadtime)	1kHz (no deadtime)	1
Crystals	24	33	
Agata position	Compact (14cm to target)	Compact	
Single efficiency	~2% *	~6.5% (measured 1 MeV)	3
Target	9Be, 10um (1.85mg/cm2)	9Be, 10um (1.85 mg/cm2) to have 0.2 ps TOF in the Be target	1
Beam Time	8 days	21 days	2.6
Acceptance	Δθ_±6°;Δφ_±10°	Δθ_±6°;Δφ_±9°	0.8
Total			12

Ideally 4-5 distances

Main Physics goals

- a) New lifetimes ⁸⁰Zn (4⁺, 5⁺), maybe lifetime limit on ⁷⁹Cu summing up all distances
- b) Gap N=50: Searching for single-particle E2 or suppressed M1 transitions in ^{85,87}Se, ^{82,83}Ge, ^{80,81,82}Ga
- c) Shape evolution beyond N=50: Measuring lifetimes of yrast and yrare 2⁺, 4⁺ and 6⁺ states in ⁸⁷Br-⁹¹Br, ⁸⁶Se, ⁸⁸Se, ⁸⁵⁻⁸⁷As, ^{84,86}Ge (to confirm the large B(E2) found at GANIL) and ⁸⁶Ge. The lifetime of the 4⁺ of ⁸⁰Zn could also be an aim.
- d) Large dataset for students

Thanks for the attention !

⁷⁸Ni and N=50 isotones: recent results in a key region for shell structure

- Many results from in-flight beams **proton knockout** at RIKEN: first in-beam spectroscopy of ⁷⁸Ni, ⁷⁹Cu
- High-resolution γ -ray spectroscopy with HiCARI

٠

2500

2000

1500

1000

500

0

Need for complementary measurements to populate medium-spin states

Cornerstones or perturbation ?

Nuclear physics: collectivity as a "perturbation" of the shell structure

Atomic/molecular physics: shell structure perturbing the collectivity

A. Bulgac and C. Lewenkopf, Phys. Rev. Lett. 71, 4130 (1993)

The N=50 gap: mass and γ -ray spectroscopy

- Mass gap: from measured Sn values
- Spectroscopic gap: from levels which are made with a g9/2-1d5/2 core excitation
- Parabolic behaviour of the shell gap
- Re-increase in Z=30 ⁸⁰Zn verified from masses
- Spectroscopy sees a decrease until Z=31

J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)
S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008)
K. Heyde et al., Phys. Lett. B 176, 255 (1986).
T. Rzaca-Urban et al., Phys. Rev. C 76, 027302 (2007)

How does the spectroscopic N=50 gap evolve in ⁸⁰Zn ? Is there the re-increase seen by mass measurements ?

Collectivity along N=50 and intruder configurations

- Lowering of energy from Z=36 to Z=32, then reincrease
- PSDG-U shell-model interaction (by F. Nowacki) quenches the N=50 gap at Z=34 at variance with data

Prediction (and observation ?) of a well deformed 4p-4h intruder structure in ⁷⁸Ni

Collectivity in ⁷⁸Ni and weak-coupling in ⁷⁹Cu

1 հ․

- The 2_1^+ state in ⁷⁸Ni is the spherical or the deformed 4p-4h?
- Large consequence on the spectroscopy of ⁷⁹Cu: weak couplir $\pi f_{5/2} \otimes 2^+_{78_{Ni}}$ proportional to β^2

0.16

How to study these nuclei?

Proton-knockout from in-flight beams:

- very exotic nuclei (⁷⁸Ni, ⁷⁹Cu, ⁸⁰Zn)
- low-spin state, proton single-particle fragments

²³⁸U (fusion-)fission:

- less exotic nuclei (⁸¹Ga)
- medium-spin state, mainly yrast

- Problems observed with ²³⁸U (fusion-)fission at AGATA-VAMOS at GANIL:
 - 1 **High** ion and γ -ray **counting rate**: large dead time (50% !), limit in beam current
 - 2 ⁸⁰Zn, ⁷⁹Cu represent a very small fraction of $\sigma_{fission}$ ≈700 mb !
 - 3 Need to put VAMOS at a large 28° angle (-> smaller solid angle acceptance)

Is there a way to improve compared to what was done at GANIL?

Idea: we are at the tail of the fission peak-> fissioning system with a lower Z

Fusion-fission reactions: ²³⁸U or ²⁰⁸Pb ?

- GEF calculations: fission probability of ${}^{208}Pb+{}^{9}Be \approx 1/20$ th of ${}^{238}U+{}^{9}Be$
- HOWEVER:
 - 1- lower Z of fissioning system -> higher ratio of $\sigma(\approx^{80}Zn)/\sigma_{fission}$
 - 2- lower Z of fissioning system -> more forward focussed fragments -> increased spectrometer acceptance
 - 3- lower total σ_{fission}: lower counting rate in AGATA and PRISMA-> increased beam current and target thickness
- Calculation convoluting GEF reaction model with PRISMA acceptance

	lons/day in PRISMA	γ-ray-ion 14 days 10% efficiency
⁷⁹ Cu	130	180
⁸⁰ Zn	5600	7800
⁸¹ Ga	4E4	5.5E4

Factor ≈5 increase in ⁸⁰Zn, ⁷⁹Cu production compared to AGATA-VAMOS @ GANIL (plus X 2 efficiency, plus small dead time)

<u>The limit of spectroscopy is significantly extended with respect to</u> <u>AGATA-VAMOS @ GANIL (⁸¹Ga)</u>

What we want to measure

⁷⁹Cu

From the 81 Ga, 83 As systematics from fission, we expect to observe the $9/2^{-}$, $13/2^{-}$ levels in 79 Cu

⁸⁰Zn

2⁺, 4⁺ levels know from ⁸⁰Zn proton-knockout N=50 core excitations: 5⁺, 6⁺, 7⁺ levels, typically populated by fission

Fission studies: ²⁰⁸Pb+⁹Be -> ²¹⁷Rn

²¹⁷Rn is in the middle of a symmetric-fission valley, where nuclear structure seems not strong enough to overcome a liquid-drop behaviour, as in the actinide region.

However, other observables may reveal the effect of nuclear structure:

In GEF, the effect of structure is based on phenomenological extrapolations. In other models, such structures are absent. However, no data is readily available for these observables in this region.

The main goal is to identify the relevant acting shells and compare them with the octupoledeformed shells recently identified as responsible for asymmetric fission:

Experiment and beam time request

- Two different PRISMA angles with similar fission fragment yield useful for fission
- 2 pnA of ²⁰⁸Pb @ 1300 MeV (PIAVE-ALPI)
- 2 mg/cm² ⁹Be target

	lons/day in PRISMA	AGATA efficiency	γ-ray intensity	γ-ray-ion / 14 days
⁸⁰ Zn: 5+,6+	5600	(1400 keV) 7%	30%	1600
⁷⁹ Cu: 9/2⁻		(3000 keV) 4%	50%	40
⁷⁹ Cu: 13/2 ⁻	130	(600) 11%	50%	100

We request a total of 14 days for the spectroscoy of medium spin states in ⁸⁰Zn, ⁷⁹Cu and nearby isotopes

Collaboration

- Local LNL/PD: J.J Valiente, A. Goasduff, R. Menegazzo, D. Mengoni, G. de Angelis, S. Lenzi...
- From fission community: M. Caamano, D. Ramos...
- From «⁷⁸Ni» HiCARI @ Riken community: K. Wimmer, P. Doornenbal, R. Taniuchi, S. Franchoo, Zs. Podolyak, M. Gorska
- From fusion-fission GANIL community: D. Verney, F. Ibrahim, C. Delafosse, G. Duchene, J. Dudouet, F. Didierjean...
- Theoretical models in the ⁷⁸Ni region: F. Nowacki

Backup

Other isotopes

	lons/day in PRISMA	γ-ray-ion 14 days
⁷⁴ Ni	930	1300
⁷⁹ Cu	130	180
⁸⁰ Zn	5600	7800
⁸¹ Zn	730	1000
⁸¹ Ga	4E4	5.6E4
⁸⁴ Ge	4.5E4	6.3E4

What we want to measure – other isotopes

With large statistics

- higher spin states which come states that are a pure N=50 broken core as 7⁺: 8⁺, 9⁺, 10⁺ from g_{9/2}⁻¹-d_{5/2}¹ coupled with fp (2+,4+) proton excitations. Can we describe the spherical 1p-1h excitations with present interaction used for ⁷⁸Ni ?
- Weak non yrast 2p-2h states become observable: intruder band tentatively observed observed in gamma-gamma fission studies, 2p-2h (4p-4h)
- ⁸⁴Se, ⁸²Ge largely produced (≈10⁵ ion-γ coincidences). Strong advantage in cleanliness compared to «old-style» fission studies without fission fragment

Also odd-odd and odd-even isotopes will be studied with higher statistics extending their level scheme, aund using anglur correlations: N=51 ⁸⁴As, ⁸³Ge, ⁸²Ga, ⁸¹Zn

⁷⁸Zn – 20-30 counts

Plunger experiment AGATA-VAMOS (1/80th of the statistics we should collect)

