Letter of intent for the 5th AGATA PREPAC- ²³⁸U beam

Lifetimes of excited states along and around the N=50 shell closure

A. Gottardo, J.J. Valiente-Dobón, A. Goasduff, F. Angelini, L. Corradi, E. Fioretto and the LNL Gamma group J. Dudouet, CNRS Lion F. Galtarossa, D. Mengoni, G. Montagnoli, A. Stefanini and the INFN-PD Gamma group M. Caamaño, Univ. Santiago D. Verney, CNRS Orsay F. Didierjean, G. Duchene, CNRS Strasbourg

Spokepersons: J.J. Valiente-Dobón, A. Gottardo

Physics case

Isotopes around ⁷⁸Ni are at the very edge of the present knowledge in nuclear shell structure. The N = 50 region nearby has been the object of an intense research in the last years, with the first spectroscopic study of ⁷⁸Ni having been published recently [1]. The development of deformation around the N = 50 shell closure [1, 2] as well as the reduction of the N = 50 shell gap [3, 4] when approaching ⁷⁸Ni, have motivated many different measurements. The N = 50 gap size has been deduced by mass measurements up to ⁸⁰Zn [3, 4], showing a decrease of the gap from Z = 40 to Z = 32, before increasing again towards ⁸⁰Zn [3, 4]. In these nuclei, an alternative estimate of the gap size is provided by the medium-spin states 5⁺,6⁺,7⁺ in N = 50 even-even isotones, and analogous 13/2⁻ and 15/2⁻ states in the odd isotones: their wave function involves one particle-one hole neutron excitations across N = 50 (the protons in the fp shells above Z = 28 can only generate spins up to 4⁺ by breaking one pair). The lowering in the energy of the N = 50 core-breaking 5⁺, 6⁺ and 7⁺ levels in ⁸⁶Kr₅₀, ⁸⁴Se₅₀ and ⁸²Ge₅₀ [5, 6] mirrors the mass measurement until ⁸²Ge₅₀. However, the "spectroscopic gap" seems to continue decreasing in ⁸¹Ga [7], while no 5⁺, 6⁺, 7⁺ states are known in ⁸⁰Zn to verify a possible re-increase in analogy with the mass measurements [8].

Indeed, the first spectroscopy of ⁷⁸Ni and ⁷⁹Cu has opened some questions. In ⁷⁸Ni, recent largescale shell- model calculations predict an intruder structure close to and even lower than the first 2⁺ state, which is already lying at a rather low energy for a s doubly-magic nucleus Gammaray spectroscopy of ⁷⁸Ni has provided tentative evidence of intruder states [1]. In ⁷⁹Cu the first spectroscopy via proton-knockout has revealed a number of states around the ⁷⁸Ni 2⁺ energy quite difficult to disentangle [9], with no evidence of a low-lying proton $f_{7/2}$ strength coming from a *Z* = 28 core break, important for the ⁷⁸Ni 2⁺ level energy [1, 2].

A strictly correlated issue is the appearance of shape coexistence close to ⁷⁸Ni. The discovery of a low-lying 0⁺ state in N = 48 ⁸⁰Ge was interpreted as an evidence of shape coexistence [10], although a subsequent work could not observe this state [11]. Odd-even N = 49 isotones from Z = 38 to Z = 30, are characterized by the presence of intruder 1/2⁺ and 5/2⁺ states which lower to an excitation energy of only ~ 500 keV in ⁸³Se₄₉, at mid of the proton Z = 28 - 40 shell [12]. These non-yrast intruder states may appear as long-lived β -decaying isomers if they become the first excited state, like the 1/2⁺ isomer in ⁸¹Ge₄₉ and ⁷⁹Zn₄₉ [12], because their γ -ray decay to the 9/2⁺ ground state is hindered by the spin difference. The isomer in ⁷⁹Zn was found to have a large mean square radius compared to the ground state [13], a convincing evidence of shape coexistence. Also in odd-odd N = 49 isotones experimental evidence of low-lying intruder states has been found [14].

From this discussion, it follows that there is a need to probe the wave functions of nuclei around the N=50 shell closure, to detect intruder structures as well as to understand the quadrupole collectivity developing towards the new predicted island of inversion below ⁷⁸Ni. This LoI thus has two aims:

- a) Searching for single-particle E2 or suppressed M1 transitions in ^{85,87}Se, ^{82,83}Ge, ^{80,81,82}Ga, ⁸⁰Zn. The energy of states breaking the N=50 shell closure, as well as of intruder states, is a crucial probe for both the N=50 spherical gap as well as the correlations moving towards ⁷⁸Ni. Such states will decay with weak, if not suppressed, transitions to the normal spherical configurations. On the contrary, intruder states should be linked by large E2 strengths.
- b) Measuring lifetimes of yrast and yrare 2⁺, 4⁺ and 6⁺ states in ⁸⁶Se, ⁸⁸Se, ⁸⁴Ge (to confirm the large B(E2) found at GANIL) and ⁸⁶Ge. The lifetime of the 4⁺ of ⁸⁰Zn could also be an aim. Here the aim is to understand how rotational/triaxial collective structures develop in the valence space beyond N=50, a crucial probe for how well shell-model interactions can describe this largely unexplored region of the Segré chart.

Experiment

We propose to use a ²³⁸U beam at 6.3 MeV/u and 0.4 pnA on a ⁹Be target (around 1.8 mg/cm²). The degrader will be either Mg or Nb, with a thickness around 5 mg/cm² in the case of Mg. PRISMA will be placed at an angle as forward as feasible with the counting rate, typically around 24-26 degree. The foreseen beam time request is 21 days.

The gain with the LNL Prisma-AGATA compared to the previous VAMOS-AGATA setup at GANIL is quantified in the table below.

	AGATA-VAMOS	AGATA-PRISMA	Gain factor
Beam	238U @ 6.3 MeV/u,	238U @ 7.2 MeV/u: ~0.4	~2
	25enA: 0.2 pnA at 28	pnA at 28 degrees	
	degrees		
Dead Time	0.5kHz of trigger (no	1kHz (no deadtime)	1
	deadtime)		
Crystals	24	33	
Agata position	Compact (14cm to	Compact	
	target)		
Single efficiency	~2% *	~6.5% (measured at 1	3
		MeV)	
Target	9Be, 10um	9Be, 10um (1.85	1
	(1.85mg/cm2)	mg/cm2)	
Beam Time	6 days	21 days	3.5
Acceptance	$\Delta\theta_{\pm} 6\circ; \Delta\phi_{\pm} 10\circ$	$\Delta\theta_{\pm} 6\circ; \Delta\phi_{\pm} 9\circ$	0.8
	-	-	
Total			18

With the predicted gain in the product yield, we propose to run for three weeks with a ²³⁸U beam at 6.2 MeV/u (0.5 pnA) on a ⁹Be target with the AGATA-PRISMA setup.

*Private communication: Dudouet measured the efficiency for 100Zr add-back for 497.3 keV transition $6+ \rightarrow 4+$ The efficiency was 2.75%: scaled for 1 MeV it was ~ 2%, not the predicted 4%.

- [1] R. Taniuchi et al., Nature 569, 53 (2019).
- [2] F. Nowacki, A. Poves, E. Caurier, and B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016).
- [3] J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008).
- [4] S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008).
- [5] T. Rzaca-Urban et al., Phys. Rev. C76, 027302 (2007).
- [6] D. Thisse et al., The European Physical Journal A 59, 153 (2023).
- [7] J. Dudouet et al., Phys. Rev. C100, 011301(R) (2019).
- [8] S. Leoni, C. Michelagnoli, and J. N. Wilson, La Rivista del Nuovo Cimento 45, 461 (2022).
- [9] L. Olivier, S. Franchoo, M. Niikura, Z. Vajta, D. Sohler *et al.*, Phys. Rev. Lett. **119**, 192501 (2017).
- [10] A. Gottardo, D. Verney, C. Delafosse, F. Ibrahim, B. Roussiere, *et al.*, Phys. Rev. Lett. **116**, 182501 (2016).
- [11] F. Garcia et al., Phys. Rev. Lett. 125, 172501 (2020).
- [12] C. Wraith et al., Phys. Lett. **B771**, 385 (2017).
- [13] X. F. Yang, C. Wraith, L. Xie, C. Babcock, J. Billowes, et al., Phys. Rev. Lett. 116, 182502 (2016).
- [14] A. Etile et al., Phys. Rev. C91, 064317 (2015).