PIAVE-ALPI ACCELERATOR

Production yields of neutron-rich heavy nuclei in the ²³⁸U+¹²⁴Sn multinucleon transfer reaction PRISMA + NOSE + AGATA experiment

Spokespersons: L. Corradi, F.Galtarossa, T.Mijatovic

L. Corradi¹, F. Galtarossa², T. Mijatović³, P. Aguilera², G. Andreetta^{1,2}, F. Angelini^{1,2}, M. Balogh¹, J. Benito¹, G. Benzoni^{4,5}, S. Bottoni^{4,5}, A. Bracco^{4,5} D. Brugnara⁶, L. Busak³, F. Camera^{4,5}, S. Carollo¹, G. Corbari⁴, G. de Angelis¹, M. del Fabbro³, E. Fioretto¹, A. Gadea⁷, I. Gašparić³, A. Giaz⁴, A. Goasduff¹, B. Gongora¹, A. Gottardo¹, A. Gozzelino¹, A. Horvat³, D. Jelavić Malenica³, S. M. Lenzi², S. Leoni^{4,5}, I. Lihtar³, N. Marchini⁹, R. Menegazzo², D. Mengoni², M. Milin⁸, B. Million⁴, G. Montagnoli², A. Nannini⁹, D. R. Napoli¹, R. Nicolas del Alamo², L. Palada³, J. Pellumaj¹, R. M. Pérez-Vidal^{1,7}, S. Pigliapoco², E. Pilotto², M. Polettini⁶, F. Recchia², K. Rezynkina², M. Rocchini⁹, M. Siciliano¹⁰, M. Sigmund³, N. Soić³, A. M. Stefanini¹, D. Stramaccioni², S. Szilner³, J. J. Valiente-Dobón^{1,7}, O. Wieland^{4,5}, L. Zago¹, I. Zanon¹¹

Physics goal

study the A,Z,Q-value distributions and associated σ for the population of nuclei around Z=92 \rightarrow comparison with state-of-art theories

Exploiting the multinucleon transfer mechanism to get access to neutron-rich regions above and below Z=92

Z > 92 interesting for

- spectroscopy of neutron-rich transactinides
- fission properties (barriers, mass partitions)

Z < 92 interesting for

- octupole deformation
- Electric Dipole Moments (Ra)
- Parity non conservation (Fr)

Exp: big interest in developing advanced techniques for high detection efficiency and high A,Z,Q resolution to get σ and associated nuclear structure information

Theory: big interest in developing theories able to predict cross sections and effects of secondary processes (Coupled channel, Semiclassical, TDHF, Langevin, QMD, DNS, EDF)

opening of proton pick-up channels: one textbook example

PHYSICAL REVIEW C 94, 064616 (2016)

Multinucleon transfer reactions in the 40 Ar + 208 Pb system

T. Mijatović,^{1,*} S. Szilner,¹ L. Corradi,² D. Montanari,^{3,4} G. Pollarolo,⁵ E. Fioretto,² A. Gadea,⁶ A. Goasduff,² D. Jelavić Malenica,¹ N. Mărginean,⁷ M. Milin,⁸ G. Montagnoli,³ F. Scarlassara,³ N. Soić,¹ A. M. Stefanini,² C. A. Ur,⁷ and J. J. Valiente-Dobón²

GRAZING cross section predictions for ²³⁸U+¹²⁴Sn

for multiproton transfer GRAZING predicts larger cross sections along the stripping direction and thus Z > 92 for the heavy partner

Light and heavy transfer products in ²³⁸U+¹²⁴Sn

W.Mayer et al., Phy. Lett. B 152, 162 (1985)

K.Sekizawa, Phys. Rev. C 96, 041601R (2008)

average A,Z,Q-value distributions measured with large area gas detectors show higher cross sections along the proton pick-up direction TDHF calculations indicate a change of proton flux with bombarding energy and a dependence on nuclear orientation

Multinucleon transfer reactions in ²⁰⁶Pb+¹¹⁸Sn

a wealth of transfer channels could be measured with high Z,A,Q-value resolutions with the large magnetic spectrometer PRISMA. Experimental differential and total cross sections have been compared with theoretical calculations and more reliable extrapolations can be made for the production of n-rich heavy partners

J. Diklic et al., Phys. Rev. C 107, 014619 (2023)

PHYSICAL REVIEW C 109, 024614 (2024)

Multinucleon transfer with time-dependent covariant density functional theory

D. D. Zhang¹, D. Vretenar¹,^{2,1,*} T. Nikšić,^{2,1} P. W. Zhao¹,[†] and J. Meng^{1,‡}

²³⁸U+¹²⁴Sn MNT measurement

scroll scroll G \bigcirc gas out gas out V9 🕺 🛱 V10 gauge V12 V6 🖂 electro P gauge valve gas in QØ e P PPAC BC ₩ vent gauge V7 D AC DA V5 flux meter MKS vent gauge • 2v11 - CF4 V4 DO baratron turbo V8 gas in QO reassembled Ŕ vacuum system scroll

Second arm (NOSE)

The ¹⁹⁷Au+¹³⁰Te experiment with the PRISMA spectrometer

¹⁹⁷Au+¹³⁰Te : mass-mass correlation matrix

high resolution kinematic coincidence

the identification in mass of the light fragment with high resolution allows to separate the mass distribution of the heavy partner in well defined bands, whose centroids and widths depend on secondary processes

> F.Galtarossa et al., Phys. Rev. C 97 (2018) 054606

Detection of light and heavy transfer products in ⁵⁸Ni+²⁰⁸Pb

L.Corradi et al, Phys.Rev.C 66 (2002) 024606

why AGATA is fundamental for this ²³⁸U+¹²⁴Sn MNT measurement

Some nuclear regions which are interesting for spectroscopy

nuclei around 228-232U are predicted to exhibit a transition from octupole vibrations to g.s. octupole deformation. In the neutron-rich region we can complete the g.s. rotational bands (high angular momenta)

in the Th chain one does not know yet the full set of E2 and E3 matrix elements

232Pu	233Pu	234Pu	235Pu	236Pu	237Pu	238Pu	239Pu	240Pu	241Pu	242Pu	243Pu	244Pu
231Np	232Np	233Np	234Np	235Np	236Np	237Np	238Np	239Np	240Np	241Np	242Np	243Np
2300	2310	2320	2330	234U	2350	2360	2370	238U	2390	2400	2410	2420
229Pa	230Pa	231Pa	232Fa	233Pa	234Pa	235Pa	236Pa	237Pa	238Pa	239Pa	240Pa	241Pa
228Th	229Th	230Th	231Th	232Th	233Th	234Th	235Th	236Th	237Th	238Th	239Th	

Light and heavy transfer products in ²³⁸U+¹²⁴Sn

physics goal

study the A,Z,Q-value distributions and associated σ for the population of nuclei around Z=92 \rightarrow comparison with state-of-art theories

best possible characterization of the heavy partner via high resolution kinematic coincidences Prisma-Nose

- → construction of light-heavy mass-mass correlations (evaporation)
- \rightarrow measurement of transfer induced fission probability
- \rightarrow γ -ray detection of binary partners with Agata (inelastic, transfer strength to excited states, identification of evaporative processes)

a well taken case

average cross sections available from low resolution measurements (reference)
neutron rich beam-target combination suitable for the population of pick-up and stripping channels at the same time

- mass of Sn-like nuclei can be clearly identified with Prisma
- grazing angles for Sn- and U-like nuclei quite the same in inverse kinematics
 - \rightarrow it well fits with the geometrical constraints of PRISMA+NOSE
 - \rightarrow interchange of ion detection with Prisma and Nose for yields checks

Beam time request : 14 days

²³⁸U beam 1 pnA ¹²⁴Sn target 300 μg/cm² $E_{lab} = 1350 \text{ MeV}$ Prisma $θ_{lab} = 35^{0}$ Nose $θ_{lab} = 35^{0}$

Prisma sensitivity on $d\sigma/d\Omega$: 1 µb/sr ~ 25 counts/day

assuming 8-10 masses for the (4p) channel \rightarrow 10 days of beam time to accumulate a 20% statistical error on the average of the mass yields

experimental conditions

measurement

Setting up Prisma+Nose+Agata \rightarrow 2 days

Bρ scanning to check transmission (DIC components) → 2 days additional needs