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Previous results

Two main issues arising when looking at pion data:

e Energy leakage outside calorimeter -> low energy tail, corrected on average through simulation
information, planning to also look at leakage counters
e Light attenuation in optical fibres -> high energy tail

DRene after cuts, containment correction applied (40 GeV)
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Previous results

Two main issues arising when looking at pion data:

e Energy leakage outside calorimeter -> low energy tail, corrected on average through simulation
information, planning to also look at leakage counters

e Light attenuation in optical fibres -> high energy tail <
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Stochastic term Constant term Stochastic term Constant term Stochastic term Constant term
(S) (S) (C) (©) (DR) (DR)
Asymmetry correction 73.94% 7.2% 133.49% 8.24% 70.72% 6.51%
Timing correction (S, C and 63.35% 8.86% 124.27% 10.48% 62.18% 7.93%
DR independently,
parametrisation with truth E)
DR after timing-corrected 64.8% 8.72% 119.49% 10.97% 61.2% 8.01%
S/C energy (chi = 0.35)
DR after timing-corrected 64.8% 8.72% 119.49% 10.97% 65.03% 7.58%
S/C energy (chi = 0.44)
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Correction procedure

At first, tried to correct DR energy alone through parametrization at a fixed point (e.g. 40 GeV run), and later repeat
procedure for S/C channels. However, this was brute-forcing the three distributions to have the same energy

Then, tried to use the Most Probable Value of the Cerenkov/Scintillation distributions at 40 GeV as the point at which
the timing parametrization should be centred, and later apply the DR formula to the corrected distributions

DR energy built after S&C TDC corrections, over timing 40 GeV

S energy, before timing correction 40 GeV S energy, after timing correction 40 GeV
s r s E _ cProfDReneTdc_OverTDC
S o0 € sof > -
87 87 2 = Entries 14583
= c £ E o 50
£ 50— S 50 = L
g . - 8 - " o L Mean 666
: - - g ¢ . o L
-
¢ “oF et - ¢ “oF - - w B . |Meany 39.16
e L - e L - - - o [
£ k 5 1 . 8 ++ {StdDev 8614
E . £ " & 40 - + ++++*****+Hﬂ++**++ +
20 20 = r ++ StdDevy 5.027
L F 50 B -
10 10 -
E F L £
£ Il Il 1 L E Il Il Il —
600 620 640 660 680 700 720 © 600 620 640 660 680 700 720 © 30
TDC_TS11 TDC_TS11 r
C energy, before timing correction 40 GeV C energy, after timing correction 40 GeV B
[cCotzCereneTacTC11 e | CCotzCereneTdcTC11_post [
g c g .
8 © o y 8
z 60 . Veny s E 60 " : 20—
g ! - - s 707 g ! s 7 —
£ 501 re £ 501 - = g r
§ ¢ § ¢ L
2 r s
3 40 3 40 r
e =3 -
g g 10
2 30 2 30 r
20 20— r
E [ o L
wF Wb 8|\\|\\\\\\\\\|\\|
E E 00 620 640 660 680 700 720
C Il Il Il L Pl PR o C Il Il Il L Il 1 0 TDC TS11
€00 610 620 630 640 650  660__ 670 600 610 620 630 640 650  660__ 670 —

TDC_TC11 TDC_TC11




Correction procedure

Almost linear response for dual-readout channel, scintillating and Cerenkov keep their original value.
But, we expect the S(C) measured signal to increase with increasing energy due to larger electromagnetic fraction
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Correction procedure

Almost linear response for dual-readout channel, scintillating and Cerenkov keep their original value.
But, we expect the S(C) measured signal to increase with increasing energy due to larger electromagnetic fraction
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Other tests

Build time barycenter distributions from the three towers T11, T00 and T15 (where we have time information)

df["BaryTimeS"] = (df["TS00"|*df["TDC_TS00"] + df["TST1"I*df["TDC_TS11"] + df["TS15"[*df["'TDC_TS15"]) / (df["TS00"J+df["TS11"]+df["TS15"])
df["BaryTimeC'] = (df["TCO0"I*df["TDC_TCO0'] + df["TC11"]*df["TDC_TC11"] + df['TC15"*df["'TDC_TC15")) / (df["TCO0"[+df["TCT1"]+df["TC15"))
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Other tests

Build time barycenter distributions from the three towers T11, T00 and T15 (where we have time information)
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Other tests

Build time barycenter distributions from the three towers T11, T00 and T15 (where we have time information)

df["BaryTimeS"] = (df["TS00"|*df["TDC_TS00"] + df["TST1"I*df["TDC_TS11"] + df["TS15"[*df["'TDC_TS15"]) / (df["TS00"J+df["TS11"]+df["TS15"])
df["BaryTimeC'] = (df["TCO0"I*df["TDC_TCO0'] + df["TC11"]*df["TDC_TC11"] + df['TC15"*df["'TDC_TC15")) / (df["TCO0"[+df["TCT1"]+df["TC15"))

One single variable may not be enough to recover linearity.

Ideas:

1)  launch everything into a neural network (tried quick test with boosted decision tree, but could not generalize at
different energies from the training set ones)

2)  Analytical way to estimate signal emission position along fiber through timing, and calculate what the signal would be
if it was emitted at a ~electromagnetic shower depth

-> Would require knowing time for all towers, not just three (and SiPMs) ?






Simulation

Comparisons between TB24 data and Monte Carlo simulations




Comparing time information

In order to access time information, the optical photon time-of-arrival given by the SiPM simulation package is stored (one

number per fiber).
However, during the TB we had one value for the whole tower

Tested two approaches:

1) Take ToA of first optical photon in each tower

2)  Mean of optical photons belonging to the same tower




Comparing time information

1) Take ToA of first optical photon in each tower

Data: time in [ns] is given by TDC*140/1000 (time resolution in [ps]). An offset of ~90ns is found with respect to the

simulation, so the data distribution is shifted until the two have the same peak position
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Comparing time information

2)  Mean of optical photons belonging to the same tower

Somewhat better agreement, probably a threshold on the number of optical photons required to pass a threshold should be
required -> maybe take the mean of the first n photons

[ S channel, Tower 11 ] [ C channel, Tower 11 ]
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Data/MC comparison - Pions
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Data/MC comparison - Pions
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Data/MC comparison - Pions
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