

SuperMAD update meeting

ENEA – Giuseppe Celentano, Antonella Mancini, Andrea Masi, Laura Piperno, Angelo Vannozzi

Teams, 13/5/2025

ENEA (current) involvement in SUPERMAD

WP	Task and sub-task description	Units involved
	Task 1.1 - REBCO cladding	
WP1 – Superconducting Materials	1.1.1 Development of fixture methods (M1-M12)	LNF, ENEA, RM3
	1.1.2 Evaluation of REBCO exposure procedure (M2-M12)	LNF, ENEA, RM3
	1.1.3 Cladding of reference cavity for WP3, task 3.2 (M13-M18)	LNF, ENEA, RM3
	1.1.4 Optimization of cladding procedure on haloscope cavity for task 3.1 (M19-M34)	LNF, ENEA, RM3
	1.1.5 Planar Sample for WP2 (M3-M10)	LNF, ENEA, RM3
	Task 1.3 – Iron Based SC	
	1.3.1 Development of Fe(Se,Te) tape (M1-M12)	RM3, ENEA
	1.3.2 Development of Fe(Se,Te) tape: large area deposition (M13-M36)	RM3, ENEA
	1.3.3 Electrodeposition of FeSe films (M9-M36)	RM3, ENEA
	1.3.4 Planar Sample Fe(Se,Te) for WP2 (M13-M24)	RM3, ENEA
	1.3.5 Planar Sample FeSe for WP2 (M25-M36)	RM3, ENEA

Task 1.1 – REBCO Cladding

Task 1.1 – REBCO Cladding

1.1.1 & 1.1.2: Test cavity (4 pieces) and reference 10 piece received beginning of May

1.1.5: (REBCO Planar Sample for WP2) To produce small samples on copper planar substrate for RM3 and PoliTO

- 1. 1mm thick copper ok?
- 2. Size?
- 3. What is tolerable on the REBCO surface? i.e., the presence of an oxide layer or oxide layer residues from the buffer layer affects the performance?

Task 1.3 - FeSe - Handling

- To be stored in dessiccator (under vacuum?)
- Avoid water adsorption

FeSe - Electrochemistry

FeSe

Iron Tape

REPRODUCIBLE 3-STEP METHOD FOR THICK FeSe FILMS ON IRON SUBSTRATES

 2θ (°) **STEP 1 ELECTROCHEMICAL SOLUTION for FeSe:** SeO₂ 0.08 M +FeSO4 0.42 M, pH 2 70 °C, 5 min V = -1,1 vs Ref (Ag) WORKING ELECTRODE: Fe COUNTER ELECTRODE: Pt

Electrodeposition on cavities

Chemical compatibility with cavities - Copper-coated Iron Substrates

WE KNOW IRON SUBSTRATES ARE NOT SUITABLE!! OTHER ARCHITECTURES ARE BEING STUDIED TO REDUCE ITS THICKNESS!!!

Copper (e-beam)

ISSUES:

- Samples are brittle an fragile
- FeSe shows degradation in time if stored in air
- We can no longer work with Te (safety issues, cancerogenic)
- First results on thinner Fe substrates (40 mm) unsuccessful

NEXT STEPS:

- Other samples on thin Fe substrates (40 mm)
- Find effective ways to reduce interstitial Fe without Te (S, Se)

PLD Fe(Se,Te)bi-layer – the seed approach

Bilayer vs single-layer

- T_C increase
- In-field J_C improve

(001)CaF₂ substrates

Increasing of Fe(Se,Te) film thickness

• Doubled laser energy for Fe(Se,Te) top layer deposition

Nominal thickness ~300 nm (total)

Т_{со}=17.4 К

Film instability: Telephone cord blisters

thermal and/or epitaxial strain relaxation

(001)CaF₂ substrates

.

(001)MgO substrate

Seed Layer 400 °C, Top Layer 200 °C, total thickness ~200nm

— 3 T

- 6 T -**v**-9 T

🔶 12 T

┥ – 15 T

80 100 120

6 K

-20

θ (°)

20 0

40 60

(001)MgO substrate: increasing of thickness (...)

Fe(Se,Te) on Mgo

Characterization ongoing (VSM and ACS)

- Improved Fe(Se.Te) film properties on CaF₂ and MgO single crystal substrates
- Isotropic J_C behaviour
- Thick film: instability on CaF2, in progress on MgO

Thank you for your attention

