

QF simulation

Giulia D'Imperio

12/05/2025

QF simulation

- QF from SRIM implemented in Geant4 using the hits class
- Parameterized with a function (from Flaminia's PhD thesis)

$$QF(E) = \frac{k(E_{ion} + aE_{ion}^b)}{1 + k(E_{ion} + aE_{ion}^b)}$$

dE

 $F(E) = \frac{d(E \times QF(E))}{d(E \times QF(E))}$

Ion	k	a	b	χ^2/ndf
Η	0.65 ± 0.02	1.82 ± 0.08	0.48 ± 0.04	40.35/20
He	0.117 ± 0.005	3.9 ± 0.2	0.44 ± 0.03	20.94/20
С	0.0195 ± 0.0007	14.7 ± 0.4	0.33 ± 0.1	36.53/20
F	0.0083 ± 0.0002	27.4 ± 0.7	0.303 ± 0.008	16.74/20

Check QF for He recoils 500 keV

Total QF (E_ion/E_tot)

dQFdE (dE_ion/dE_tot)

Check QF for He recoils 100 keV

Total QF (E_ion/E_tot)

dQFdE (dE_ion/dE_tot)

Check QF for He recoils 10 keV

Total QF (E_ion/E_tot)

dQFdE (dE_ion/dE_tot)

Check QF for He recoils 1 keV

Step#	X (mm)	Y(mm)	Z (mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
0	-195	-112	-10.8	0.001	0	0	0	CYGN0_gas	initStep
1	-195	-112	-10.9	0	0.001	0.0553	0.0553	CYGN0_gas	ionIoni

Closure test

The QF returned by Geant is correct for energies > 10 keV, while at 1 keV the total QF is equal to the derivative dQFdE because Geant4 tracks of 1 keV ions have only one step.

To do: force geant to do finer steps or find a workaround to apply the correct QF at ~few keV