

R&D on high timing performance RPCs

On behalf of RPC R&D groups from I KODEL and NFN-Ba-To

dayron.ramos.lopez@cern.ch

RPC R&D

High timing performance RPC for future accelerators (DRD1-WP7b) Some tasks:

- Development and performance study of small RPC prototype with time resolution of O(200 ps)
- Production of large area RPC keeping the timing performance

Performance study:

(...)

- Characterization with cosmics: signal study with different gaseous mixtures
- Performance on beam tests (efficiency, ..., time and spatial resolution)

FOR Space resolution measurements: **Readout the prototype with VMM-3a FEE integrated in GDD beam telescope**

 \rightarrow Possible of RPC into GDD beam telescope providing time stamp with resolution of 2 ns

GDD beam monitoring tracker

Thin-RPC prototype

thin gaps built in KODEL laboratory

Strip panel - pitch 5 mm - single readout (strips terminated with 50 Ω)

Gas in/outlet

HV connectors (1x gap)

80x80 x 2 cm³

- **Double gap** with strip readout panel in between
 - Soda-lime glass electrodes: 1.1 mm thickness
 - \circ Gas gap: 500 um thickness
 - $\circ/\operatorname{Resistivity:} 10^{12}\,\Omega$ $\mbox{-}\,cm$ at 20 C
- Signal readout: <u>CAEN Digitizer DT5742</u> for signal detector study
 - o 16 Ch + Fast trigger @ 5Gs/s
 - Active area: ~10 x 50 cm2

Setup @INFN-To

Cosmic setup → performance study with several mixture:

- Explore the possibility of operation with simplest mixture
- Timing study

Mixtag	TFE (%)	HFO-1234ze (%)	CO₂ (%)	iC ₄ H ₁₀ (%)	SF6 (%)
STD	95.2	-	-	4.5	0.3
STD2ISO	97.7	-	-	2	0.3
STDOISO	99.7	-	-	-	0.3
STD30CO2	65	-	30	4	1
ECO65	-	65	30	4	1
TFEISO	95	-	at GDD	5 5	-
TFE	100 te	est for integration	-	-	-
Density (g/l)	4.68	5.26	1.98	2.69	6.61
GWP	1430	7	1	3	22800

Preliminary results

Efficiency and Working Point (operation voltage)

- Low efficiency at WP, roughly 70-80% (without FEE/preamlification)
- WP \sim 4 kV, around +1kV for ECO65
- Chamber time resolution \sim 200 ps for all mixtures

- Low efficiency at WP, roughly 70-80% (without FEE/preamlification)
- WP \sim 4 kV, around +1kV for ECO65
- Chamber time resolution \sim 200 ps for all mixtures

Preliminary results

- Prompt charge populated at \sim 420 fC for all mixtures
- Larger signal contribution with ECO65

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Events normalized / 50 fC

Preliminary results

NIM Pattern Injector box for the VMM frontend \rightarrow modified by removing C, direct RPC signal

VMM hybrid on NIP in default orientation

Cosmic setup @ GDD Lab

Remarks

Pros

- Double gap thin-RPC equipped prototype have demonstrate time resolutions around 200 ps
- Reduced cluster sizes (~ 2 strips) and charge centroid (σ ~ 1 strip) rely on improvement in space resolution
- All mixture can be operated at lower Working Points, roughly 4 kV

Cons

• Low efficiency without amplification

Foreesen steps

New layout

- 1 mm **RPC segmented** by a thin layer of a floating dielectric electrode, in two 0.5 mm sub-gaps
- Expected: 100-200 ps time resolution spatial resolution better than 1 mm with 3 mm wide pick-up strips

• FEE – low charge operation Tests with FATIC3-RPC version

• Improve granularity and charge centroid algorithm

DRD1 test beams (July and November)

• Sustainability test: Low flux RPC operation

Thanks!

Backup

FCC-ee

- FCC-ee [1] will operate at 4 different center-of-mass energies:
 - \circ Z pole (90 GeV)
 - \circ WW pairs production (160 GeV)
 - HZ events production (240 GeV)
 - $\circ tar{t}$ events production threshold (365 GeV)
- High Luminosity (~ 10³⁴-10³⁵ cm⁻²s⁻¹) while lower rate environment than HL-LHC
- Maximum muon momentum roughly 180 GeV/c
- Isolated muons detection similar to LEP. Identification of non-isolated muons from hadron decays inside jets needs more stringent measures for precision flavor physics [2]
- High statistic of inelastic electron-positron collisions → rare processes production of feebly-interacting and slow particles

Challenges for Muon detectors

At the moment, only educated guess for Muon detection

- **High efficiency** muon identification > 98% (momentum measured by tracking system)
- Serving as tail-catcher for the hadron showers not fully contained in the calorimeter (discrimination/separation efficiency lower than 1%)
- Standalone momentum measurement for long-lived particles (space resolution below 500 µm and time resolution better 200 ps)
- Rate capability << 1kHZ/cm²
- Environmentally sustainable

Most of the detectors rely on instrumenting the return yoke outside the coil

Scintillator bars

RPCs

Micro-pattern Gaseous Detector (MPGD) technologies

such as μ -RWELL, Micromegas, etc.,

Muon physics at FCC-ee

Heavy-quark opportunities

- Rare flavor-changing neutral currents sensitive to new physics effects
- Mass resolution and muon identification at FCC-ee → crucial for separating close-in-mass states like B⁰_s and B⁰

 $B_s^0 \to \mu^+ \mu^-$ (5366 MeV/c²) $B^0 \to \mu^+ \mu^-$ (5279 MeV/c²)

 $B \rightarrow \mu\mu$ with an assumption of a π/μ misidentification rate of 2 × 10⁻⁵

Total fit

Muon physics at FCC-ee

Heavy Neutral Leptons searches

FCC-ee for Detecting HNLs

- Clean background → better LLP signature discrimination
- Precise tracking and vertexing → key for reconstructing displaced decays
- Sensitivity to low-mass HNLs (few GeV) via rare Z or B decays
 - a fully leptonic final state $\mu^+\mu^-\nu \rightarrow$ discrimination by reconstructed transverse distance Dxy
 - semileptonic decay into µjj, where js are hadronic jets

 D_{xy} distribution for $Z \rightarrow \mu\mu$, $Z \rightarrow \tau \tau$ and $Z \rightarrow bb/cc$

Thin-RPC KRONOS

S17/HV7

RPC-BA Laboratory work in progress

RPC readout via VMM3a

Motivation:

- Space resolution measurements with thin-RPC prototype for high-timing performance applications (DRD1-WP7b) by using GDD beam telescope
- Possible integration of RPC into GDD beam telescope

https://vmm-srs.docs.cern.ch

QNI quad NIM injector

Coupling settings tested:

- Direct RPC signal to HRS VMM
- No C and 50Ω
- 1 pF capacitor without R
- 1 pF capacitor and 50Ω
- 0.5 pF and and 50Ω

All configuration proved with 50Ω terminated/floating strips and several VMM config (gain, st) at fixed detector gain

QNI quad NIM injector

Coupling settings tested:

- 1. Direct RPC signal to HRS VMM
- 2. No C and 50Ω
- 3. 1 pF capacitor without R
- 4. 1 pF capacitor and 50Ω
- 5. 0.5 pF and and 50Ω

→ Higher charge amplification (saturation even at lower VMM gain: 0.5 mV/fC)

QNI quad NIM injector

Strip 50Ω terminated

Coupling settings tested:

- 1. Direct RPC signal to HRS VMM
- 2. No C and 50Ω
- 3. 1 pF capacitor without R
- 4. 1 pF capacitor and 50Ω
- 5. 0.5 pF and and 50Ω

C_D cancellation search: RPC through BALUN

R210 Ω impedance matching VMM side:

- Best operation range (No charge saturation)
- Noise reduction at 25 ns peak time
- Still signal undershoot

Ongoing: match RPC strip impedance and variable capacity