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Background and Motivation
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Background
• The Standard Model (SM) is incomplete: questions 

remain about the nature of dark matter, dark 
energy, matter-antimatter asymmetry, aspects of 
the Big Bang, etc. 

• Many extensions of the SM propose a hidden 
sector of particles to answer these questions, which 
can interact with SM particles via portals, for 
example the Higgs portal 

• A hidden Higgs couples to the standard Higgs 

• The coupling strength determines the lifetime 
of the particle 

• Particles with very weak couplings are known as 
Feebly Interacting Particles (FIPs)
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Reconstruction with T tracks
• Feasibility of using T tracks as focus of analysis 

demonstrated with  and  decaying 6-7.6 m 
from PV using Run 2 data [Eur. Phys. J. C 77, 181 
(2017)], [Eur. Phys. J. C 85, 7 (2025)] 

• See also talks from Giorgia and Javier at BandQ 
meeting 

• This means FIPs decaying up to 7.6 m become 
plausible targets of searches 

• Challenges: 

• Combinatorics 

• Momentum and vertex resolution 

• Completely new region of phase space 

• For details in Run 3 see talk at general 
performance meeting

Λ K0
S
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https://doi.org/10.1140/epjc/s10052-017-4679-y
https://doi.org/10.1140/epjc/s10052-017-4679-y
https://doi.org/10.1140/epjc/s10052-024-13686-6
https://indico.cern.ch/event/1531858/
https://indico.cern.ch/event/1535303/
https://indico.cern.ch/event/1512222/contributions/6468780/attachments/3057632/5406152/physics_with_ttracks_gpm.pdf
https://indico.cern.ch/event/1512222/contributions/6468780/attachments/3057632/5406152/physics_with_ttracks_gpm.pdf


Analysis Strategy
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Overall Strategy
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[Eur. Phys. J. C (2020) 80 :669]

• Search for (pseudo-)scalar particles produced in  
decays, where the b hadronises to a B or B+ and φ decays to 
dimuon 

• Muon ID helps to control background 

• Using T tracks unlocks higher lifetimes and therefore 
weaker couplings compared to Long and Downstream 

• Search inclusively i.e. search is only for a particle decaying to 
two muons in the magnet region, rather than reconstructing 
B meson 

• No hypothesis, reconstructing or matching made with 
accompanying strange hadron → higher efficiencies 

• Exclusive search also being considered in parallel for 
improved mass resolution and to serve as cross check

b → ϕs

https://link.springer.com/article/10.1140/epjc/s10052-020-8240-z


Selection Strategy

• In HLT1, trigger is independent (TIS) of dimuon 
candidate 

• Therefore largely depends on the accompanying 
strange hadron, and underlying event 

• Fully inclusive in HLT1 

• In HLT2, trigger on (TOS) dimuon candidate via a 
dedicated trigger line 
(Hlt2QEE_HtoMuMu_TTFull) 

• Final offline selection to be performed with an 
MVA approach (either NN or BDT)
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Estimated for  sample, 
 =1 ns, 3.5 GeV

B+ → K+H′ ( → μμ)
τH′ mH′ 



Normalisation Strategy

• Normalise to  where the  is reconstructed using T tracks 

•  cross sections and fragmentation fractions in  meson drop out 

• Only relative variations in T track reconstruction efficiencies are taken into account 

• Will have to be binned in pT, η in order to account for kinematic differences  

• Control sample collected and being studied in parallel for electric and magnetic dipole moment 
measurements

B → J/ψK0
S K0

S → ππ

bb B
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Blinding Strategy

• Analysis is performed blind 

• A predetermined signal region will be excluded 
from the analysis, and only opened at end of review 

• Signal region to be determined by plane of two 
uncorrelated variables with a good signal-
background separation (ABCD method, see e.g. 
https://arxiv.org/pdf/2203.01009) (WIP) 

• This region is required to accurately estimate the 
background in the signal region using a data-driven 
approach
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https://arxiv.org/pdf/2203.01009


Data and MC Samples
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Data Samples

• Data collected in September and October of 2024 
(corresponding to c3 and c4 sprucing blocks) 

• c3: µ = 4.4, hlt1_pp_forward_then_matching, 
Moore v55r12, 2.1 fb-1 

• c4: µ = 5.3, 
hlt1_pp_forward_then_matching_and_downst
ream_200kHz, Moore v55r13, 1.2 fb-1 

• In c3 unblinded 104.5 pb-1 (304800:304902) 
and in c4 154.7 pb-1 (308245:308335 ) for 
developing the analysis 
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Monte Carlo Samples

• Main exclusive decays dominating the production 
process to be simulated in order to study the 
variation of the HLT1 efficiency, as well as any 
variations of the kinematics of the φ particle 
(expected to be small) 

• Cocktail decfile being prepared, relative fractions 
to be reweighed after production [Decfiles!2294] 

• B+ and B0, scalars with a lifetime of 3 ns and masses 
of 0.25, 0.5, 0.75, 1, 1.5, 2.5, 3.5, 4, 4.5 GeV, 
depending on the accompanying kaon 

• Lifetime can be reweighed offline using
w = τgen/τnew * exp(−1/τnew + 1/τgen) * t
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https://gitlab.cern.ch/lhcb-datapkg/Gen/DecFiles/-/merge_requests/2294


Monte Carlo Samples

• Some locally generated samples used for 
development,  

• Same as for plots shown in FIPs@LHCb 
workshop 

• Corresponding to c4 conditions 

• dddb tag: dddb-20240427 

• conddb tag: sim10-2024.Q3.4-v1.2-mu100 

• geometry version: run3/2024.Q1.2-v00.00 

• These samples used for early studies and efficiency 
estimates (shown in later plots) 

B0 → K*(892)( → Kπ)H′ ( → μμ)
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https://cds.cern.ch/record/2923551/files/main.pdf
https://indico.cern.ch/event/1451530/contributions/6252331/


Normalisation
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Normalisation

• Normalise to  where the  is reconstructed using T tracks 

•  cross sections and fragmentation fractions in  meson drop out 

• Number of signal events given by: 
, where 

, and where 
 

• Number of control channel events given by: 
, where 

, and where 

B → J/ψ( → μμ)K0
S( → ππ) K0

S

bb B

NS = ℒint × σbb × fB0,± × BR(B0,± → ϕX) × BR(ϕ → μ+μ−) × ϵsign,tot(τ, m)
ϵsig,tot(τ, m) = ϵsig,geo(τ, m) × ϵsig,HLT1−TIS × ϵsig,HLT2−TOS × ϵsig,MVA
ϵsig,HLT2−TOS = ϵsig,HLT2−recostruction × ϵsig,HLT2−selection

Ncc = ℒint × σbb × fB0 × BR(B0 → J/ΨKS) × BR(J/Ψ → μ+μ−) × BR(KS → π+π−) × ϵcc,tot
ϵcc,tot(τ, m) = ϵcc,geo × ϵcc,HLT1−TIS(KS) × ϵcc,HLT2−TOS(KS) × ϵcc,offline
ϵcc,HLT2−TOS(Ks) = ϵcc,HLT2−recostruction(Ks) × ϵcc,HLT2−selection(Ks)
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Reconstruction
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Data uniformity in un/blinded regions
• Check unblinded region corresponds to 

blinded region for c3, by comparing event 
level variables in/out of the unblinded run 
range in the control sample 

• Distributions agree well 

• To do: check for c4, muon system variables
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Reconstruction dependence with beam intensity

• Check event level 
variables in the two 
different blocks 

• Differ, as expected 

• Check the candidate 
kinematics in the two 
different blocks 

• Show good 
agreement
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Mass resolution

• Mass resolution degrades as the mass of the LLP 
increases 

• The average muon momentum increases, which 
leads to a lower momentum resolution 

• This means the search window has to be wider as the 
mass increase 

• The background decreases exponentially with mass, 
so impact of this should be reduced 

• WIP: investigating ways to improve mass resolution 
with kinematic fitting for exclusive selection (see 
e.g. talk from last Friday’s RTA-DPA general 
meeting)
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https://indico.cern.ch/event/1535136/
https://indico.cern.ch/event/1535136/


Opening angle dependence

• Assumption in the seeding that track points to 
origin 

• Larger mass LLPs have higher Q-values, and 
therefore opening angles, meaning the tracks point 
less to the origin 

• For a given opening angle, dimuon reconstruction 
efficiency is approximately the same
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PID

22

Talk from Andrea 20/2/25 adding Calo ID to T tracks for 2025

• PID less performant than for Long and 
Downstream, but muon ID still shows 
good performance 

• PID calibration will be an important 
consideration: never done before for 
T tracks 

• Plan is to use same calibration samples 
and methods for Long and/or 
Downstream tracks, if there is no 
vertex z dependence 

• e.g. identify calibration signal with 
Long tracks, compute PID 
variables for standalone T segment, 
then use for calibration

https://indico.cern.ch/event/1515245/contributions/6376737/attachments/3018500/5324582/PIDe.pdf


PID
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Mystery bump
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Loose selection Tight 
selection• Previously reported on unexpected bump in the 

data 

• Corresponds to hot spot in x of tracks at first 
measurement, but doesn’t disappear when 
removing hotspot 

• Could be a reconstruction artefact → to be 
further investigated 
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Mystery bump
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Monte Carlo Corrections
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Monte Carlo Corrections

• Still under study 

• Plan is to reweight distributions using the control sample control sample for taking into account data – MC 
discrepancies 

• Following similar strategy to  

• Reweight for track multiplicity 

• Then reweight simulation with s-weighted data in regions of p and η  

• Then reweight also for LLP vertex variables 

• Then apply weights from control sample to the signal sample

B → 4μ
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Selections
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HLT2 selections
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Offline selection
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• Developing MVA to separate signal and 
background 

• Considering PyTorch NN and CatBoost 

• Uses as features kinematic, topological and PID 
variables that can discriminate signal and 
background 

• Feature selection still to be pruned 

• Use the unblinded data as background, signal taken 
from MC 

• Need to ensure data MC agreement (WIP) 

• Estimate can reduce background to < 1 event /pb-1 
keeping 60% of signal (O(20) events after catboost 
cut of > 0.995)



Offline selection

32

• Developing MVA to separate signal and 
background 

• Considering PyTorch NN and CatBoost 

• Uses as features kinematic, topological and PID 
variables that can discriminate signal and 
background 

• Feature selection still to be pruned 

• Use the unblinded data as background, signal taken 
from MC 

• Need to ensure data MC agreement (WIP) 

• Estimate can reduce background to < 1 event /pb-1 
keeping 60% of signal (O(20) events after catboost 
cut of > 0.995)



Offline selection
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Efficiencies
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Efficiencies

• Generator cut efficiency 

• Generator cuts correspond to:

35



1 2 3
Mass [GeV]

1
2
3
4
5
6
7
8
9

Li
fe

tim
e 

[n
s]

20

22

24

26

28

Ef
fic

ie
nc

y 
[%

]

 = 5.3µ=13.6 TeV s
LHCb Simulation

Efficiencies

• Reconstructibility efficiency 

• Corresponds to fraction of tracks reconstructible 
as T tracks 

• Of course all tracks reconstructible as Long and 
Downstream are also reconstructible as T tracks 
but this is not considered here 

• Something to be investigated for future 
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Efficiencies

37

1 2 3
Mass [GeV]

1
2
3
4
5
6
7
8
9

Li
fe

tim
e 

[n
s]

34

36

38

40

42

44

Ef
fic

ie
nc

y 
[%

]

 = 5.3µ=13.6 TeV s
LHCb Simulation

• HLT1 efficiency  

• Independent of the dimuon decay 

• Largely depends on the associated kaon 

• Shown here for 
 

• Will vary for other modes, to be reevaluated with 
the cocktail MC when available

B0 → K*(892)( → Kπ)H′ ( → μμ)



Efficiencies

• HLT2 efficiency wrt HLT1 

• Room for future improvement here for 2025-2026 

• In particular with the seed track MVA topological 
filtering 

• (Have retuned the model to boost efficiencies by 
30%, but issues with truth matching mean not 
implemented yet)
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Efficiencies
• Total efficiencies: 

• With respect to reconstructible (left) and generated events (right) 

• Offline selection efficiencies still WIP
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Signal and control regions
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Signal and control regions

• Work still in progress to 
identify suitable 
uncorrelated variables to 
define signal region for 
ABCD method 

• Need to be uncorrelated 
with each other and with the 
MVA response 

• Signal regions may be 
well separated before 
MVA cut but not after
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Background studies
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Background studies

• Background expected to be dominated by 
combinatorial and material interactions 

• Mainly located around beam pipe 

• Signal is much more dispersed throughout the 
volume 

• Work still underway to classify background in MC 
→ requires very high statistics due to tight trigger 
selections 

• Long term plan to do a detailed tomography of 
magnet region → may not be required for 2024 
study but precise mapping will be required for 
larger statistics
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Summary and conclusions
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Summary and conclusions

• Plots show projected sensitives for 1 fb-1, 25 fb-1 
and 300 fb-1 using the 2024 triggers, assuming 
same efficiencies for all channels as for the 

 sample, not 
accounting for background or offline selection 
efficiency 

• With T tracks can make a significant impact on low 
coupling/high lifetime limits

B0 → K*(892)( → Kπ)H′ ( → μμ)
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Summary and conclusions
• Good progress made on: 

• Analysis strategy 
• Understanding reconstruction 
• Selections 
• Efficiency estimates 

• Still to do/in progress: 
• Full MC sample generation 
• Control channel studies 
• Detailed momentum resolution and mass resolution studies 
• Data—MC reweighing 
• MVA optimisation  
• Background studies 
• PID calibration
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Thank you for listening
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Backup
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Data uniformity in un/blinded regions
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