

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

Laboratori Nazionali di Legnaro - INFN

Monte Carlo simulation of DNA damage in soft and bone tissues using Geant4-DNA

Giulia Saveria Valli

May 19th, 2025

In the last meeting...

Image of cells (LNCaPs)

Development of a geometric model

Simulations with Geant4

Determination of absorbed dose and of survival fraction in a colture irradiated with Ag-111

Results (1)

 S-value distribution similar to a lognormal

Their as some Angelopticenesis have briched

Results (1)

Time [hours]

Results (2)

Average surviving fraction as a function of the **uptake** and of the **applied activity**

In this meeting...

Therapy simulations with Geant4-DNA with Lu-177 in collaboration with Brescia's hospital

Differences between the absorbed dose in bone cancer cells (osteosarcoma cells) and soft tissues cancer cells (e.g. epatocellular carcinoma cells)

DNA damages

SSB: single break on a DNA strand

 DSB: two breaks on opposite strands that were simultaneously induced within the distance d_{DSB}

The molecularDNA example

- Geant4 is being extended with processes for the modeling of biological damage induced by ionising radiation at the DNA scale
- GEANTA-DNA A SIMULATION TOOLKIT

 molecularDNA allows easy simulation of radiation-induced
 DNA damage with flexible geometries and well
 defined damage parameters

Parameters of the simulations

- ✓ human_cell_chromosomes.mac
 ✓ ¹⁷⁷Lu
- ✓ Source: **membrane**, target: **nucleus**

- Two environments: water and compact bone
- ✓ Ellipsoidal cells made of water (14 x 3.5 x 14 µm)

Number of events

Analysis of result stability with increasing events

Analysis of result stability with increasing events

Absorbed dose

Dose vs Number of Events

Considering same cell dimensions the absorbed dose is nearly the same

Dimensions of the cells

	Osteosarcoma	Epatocellular carcinoma
Cell size	10 – 19 μm	10 — 15 μm
Nucleus size	5.7 — 15 μm	2 – 6 µm

Results

Dose comparison

With 10⁵ events there's a greater dose absorption in bone cancer cells compared to soft tissue cancer cells

Errors on DSBs

Results: repair model

Next step: a biophysical model

Biophysical model aimed at monitoring a **cell population** during a radiopharmaceutical treatment

Optimizing the parameters at play, it will predict the **surviving fraction**

Conclusions: future goals

 ✓ Comparison of the results of the geometric model with <u>experimental data</u> from the next experiment in May/June

DNA damage and the clonogenic survival of LNCaP cells treated with different activities of ¹¹¹Ag will be evaluated in vitro for different exposure times.

Validation of the biophysical model

Thanks for your attention!