GAGG VETO UPDATES

Digest meeting 2025/05/14

Tommaso Lari

Cooldown #1:

- KID based light detector from Roma
 Sapienza
- 2x2 cm Si wafer
- AITIAI KID

- Detector blind enclosed in the holder
- S21 scan using VNA

S21 Magnitude vs Frequency

• Fit Resonator Parameters:

$$S_{21}(x) = Z + \left(A\cos(-2\pi x\tau) + iB\sin(-2\pi x\tau)\right)e^{-i\phi}\left(1 - \left(\frac{Q}{Q_c}e^{i\theta}\right) \cdot \frac{\cos(\theta)}{1 + 2ix}\right)$$

Casali, Nicola, et al. "Characterization of the KID-based light detectors of CALDER." Journal of Low *Temperature Physics* 184 (2016): 142-147.

S21 Fit in Complex Plane

- Transmission line and amplifiers: Z, A,B, τ , ϕ ullet
- Impedance mismatch: θ ullet
- Optimal parameters found minimizing the χ^2 in the I-Q plane •
- Working point and center of resonator circle ullet

S21 Magnitude vs Frequency

Cooldown #1:

Resonance Frequency vs Temperature

Internal Quality Factor vs Temperature

Cooldown #2:

• Test of the KID light sensor coupled to GAGG Crystal

Set Up:

- 1. Set up is mounted on a Cu main support attached to the MXC plate
- 2. Detector faced to a 2..5x2.5x1 GAGG crystal
- 3. 4 screws hold the sandwich composed of the GAGG and the detector holder.
- 4. A 1 mm thick Teflon sheet is placed between the GAGG crystal and the copper plate to prevent mechanical damage to the crystal.
- 5. A copper foil is used to establish thermal contact between the detector holder and the main copper support

KID resonance **NOT** observed

- Thermalization?
- GAGG magnetic properties?

Cooldown #3:

Goals:

- Verify GAGG thermalization:
- Verify that the detector is still working

Set Up:

- Detector blind and thermalized on the main copper support
- A RuOx 10K thermometer is in contact with the GAGG crystal
- The thermometer is fixed on a Cu support attached to GAGG crystal using GE varnish glue.

Cooldown #3:

Simulations:

• ²³⁸U 550-165 ppb

• 39 K 10-5 ppm $\rightarrow {}^{40}$ K 1.28 ppb

• ²³²Th <200 ppb

Results of GSO sample contamination form LNGS

Simulations:

- http://www.lnhb.fr/Laraweb/
- Considered only gamma lines with intensity > 2.5% and Energy >200 keV \bullet
- 6.5 cm thick Veto (worst case) or about 130 kg of GSO
- 10^7 events generated in the veto volume
- Count gammas that escape the veto and reach bullkid detector lacksquare

• Gamma lines form U,Th and K decay chain:

Events in BULLKID Detector

Cuts: Veto Th=50 keV, 1 die only, no events in the wafer border

Simulations:

Results:

- Output of the simulations: Suppression Factor s=(Event [0.2-16]keV)/Generated events
- Different veto materials GAGG/BGO/GSO assuming the contamination of the GSO sample

Isotope	Concentration [ppb]	Activity [Bq/kg]	Rate BULLKID [dru]	Rate BULLKID Active Veto [dru]	Concentration for 1 dru [ppb]	Activity for [mBq/k
238 U	550	40	6.24e3	2.54e3	0,217	15.74
232 Th	200	2.8	3.73e2	1.52e2	1.317	18.5
40 K	1.28	3.42e-3	5.27	2.10	0.61	16.28

- Need to take into account crystals radio-purity
- Crystals Radio-purity requirements obtained from simulations

	Suppression Factor	238U	232Th	40K
t in BULLKID ROI	BGO	5.4e-5	4.6e-5	5.2e-5
same	GSO	5.9e-5	5.4e-5	5.2e-5
	GAGG	5.8e-5	5.9e-5	6.9e-5

Simulations:

NEXT STEPS:

Simulation of optical photons transportation and signal formation in KID sensor in BGO set-up (developed by Matteo del Gallo)

- Use this working package to simulate the set-up of the future veto tests
- Extend the model to simulate a realistic veto with multiple crystal tiles and sensors

Calibration:

BRAINSTORMING:

- **1.** 192 Ir wires:
 - Available because used in medical application
 - Gamma and Xray Lines [11-612] keV
- **2. Background Events:**
 - We aim to almost zero events in the ROI and applying selection cuts (1 die only, no event in the border)
 - Relaxing or Inverting the cuts, maybe, it is possible to exploit some features in the background spectrum outside the ROI
 - Use coincidence with the veto
 - To be validated using simulations
- ²⁴¹Am "inside" an instrumented material: 3.
 - Use ~60 keV Xray to calibrate BULLKID
 - Easy to tag events thanks to alpha **emission** \rightarrow minimal background in the ROI
 - To be validated using simulations

		Туре	Origin [*]	Levels	
Energy (keV)	Intensity (%)			Start [*]	End*
11.6 (-)	3.96 (6)	ХL	Pt		
65.123 (-)	2.66 (5)	X _{Ka2}	Pt		
66.833 (-)	4.55 (8)	x _{Ka1}	Pt		
205.79430 (9)	3.34 (4)	Y	Os-192	1	0
295.95650 (15)	28.72 (14)	Y	Pt-192	2	1
308.45507 (17)	29.68 (15)	Y	Pt-192	4	2
316.50618 (17)	82.75 (21)	у	Pt-192	1	0
468.0688 (3)	47.81 (24)	Y	Pt-192	3	1
484.5751 (4)	3.189 (24)	Y	Os-192	4	1
588.5810 (7)	4.517 (22)	Y	Pt-192	5	2
604.41105 (25)	8.20 (4)	Y	Pt-192	4	1
612,4621 (3)	5.34 (8)	Ŷ	Pt-192	2	0

Gamma Spectrum of 192 Ir

