

SPect for Online boron dose verification in bnCt

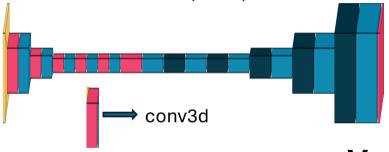
BA Team (WP3)

05-2025

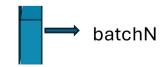
Status

- DeepLearning reconstruction of Polimi database
 - Preprocessing and database building starting from 5 distributions provided by Polimi-Nuclear group and 2 measures samples in Pavia, and other reconstructed object with previous simulations
 - Training and test of 3 models: AutoEncoder, U-net (modificated for reconstruction and denoising), Variational AutoEncoder.
 - Results in terms of metrics: NMI, SSIM, PSNR
- Materials for mechanical support already ordered

Deep Learning framework


Pipe-line for DeepLearning reconstruction:

- Data are reconstructed at 50 iterations
 - 1. Reconstruction at 50 iterations with 6 angles projections
- Pre-processing
 - 1. Database is made by images of (128,128,128)
 - 2. Images are resized to (64,64,64) and cropped at center with patch (32,32,32)
 - 3. Bin size = 0.78 mm
 - Database is augmented witk Kornia. Augmentation library: rotation, traslation, reflections, brightness, noise: 100 images for object, in total 900
 - 5. Database is divided into 75% of training and 25% as validation/test
 - 6. Cross-validated with two folds
 - 7. Models tested: AutoEncoder, U-net
 - 8. Losses: Custom
 - 9. Metrics: IoU, PSNR, SSIM, NMI


Deep Learning architectures

AutoEncoder (AE):

- Input tensor (32,32,32,1)
- Strides = (2,2,2)

05/2025

VariationalAE (VAE):

- Input tensor (32,32,32,1)
- Strides = (2,2,2)
- Regolarization of latent space with a dense layer

BA Team @ Collaboration meeting

Layer (type)	Output Shape	Param #
<pre>input_layer (InputLayer)</pre>	(None, 32, 32, 32, 1)	0
conv3d (Conv3D)	(None, 16, 16, 16, 32)	896
batch_normalization (BatchNormalization)	(None, 16, 16, 16, 32)	128
conv3d_1 (Conv3D)	(None, 8, 8, 8, 64)	55,360
batch_normalization_1 (BatchNormalization)	(None, 8, 8, 8, 64)	256
conv3d_2 (Conv3D)	(None, 4, 4, 4, 128)	221,312
<pre>batch_normalization_2 (BatchNormalization)</pre>	(None, 4, 4, 4, 128)	512
conv3d_3 (Conv3D)	(None, 2, 2, 2, 256)	884,992
<pre>batch_normalization_3 (BatchNormalization)</pre>	(None, 2, 2, 2, 256)	1,024
conv3d_4 (Conv3D)	(None, 1, 1, 1, 512)	3,539,456
batch_normalization_4 (BatchNormalization)	(None, 1, 1, 1, 512)	2,048
conv3d_5 (Conv3D)	(None, 1, 1, 1, 1024)	14,156,800
<pre>batch_normalization_5 (BatchNormalization)</pre>	(None, 1, 1, 1, 1024)	4,096
conv3d_transpose (Conv3DTranspose)	(None, 2, 2, 2, 512)	14,156,288
batch_normalization_6 (BatchNormalization)	(None, 2, 2, 2, 512)	2,048
conv3d_transpose_1 (Conv3DTranspose)	(None, 4, 4, 4, 256)	3,539,200
<pre>batch_normalization_7 (BatchNormalization)</pre>	(None, 4, 4, 4, 256)	1,024
conv3d_transpose_2 (Conv3DTranspose)	(None, 8, 8, 8, 128)	884,864
batch_normalization_8 (BatchNormalization)	(None, 8, 8, 8, 128)	512
conv3d_transpose_3 (Conv3DTranspose)	(None, 16, 16, 16, 64)	221,248
batch_normalization_9 (BatchNormalization)	(None, 16, 16, 16, 64)	256
conv3d_transpose_4 (Conv3DTranspose)	(None, 32, 32, 32, 32)	55,328
batch_normalization_10 (BatchNormalization)	(None, 32, 32, 32, 32)	128
conv3d_6 (Conv3D)	(None, 32, 32, 32, 1)	865

Deep Learning architectures

Unet with bottleneck (Unet3D):

INPUT = (1,32,32,32)

Each Downward Block: 2-(3D) convolutions with BatchNor + LeakyReLU.

Each Downsample Block: Conv3D with stride $2 \rightarrow$ halves the spatial dimensions.

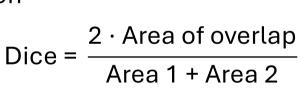
Upsample Block: Upsample + Conv3D(1x1) to raise the resolution.

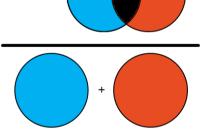
Skip connections: Addition (not concatenation) between the upsampled output and the one from the encoding path.

Final Block: Set the number of channels to 1 for the output

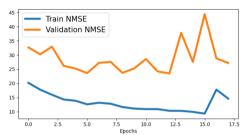
Deep Learning losses and metrics

1. Mean Squared Error (MSE):


$$(y_{true} - y_{pred})^2$$



Loss = $\frac{1}{2}$ (1-Dice) + $\frac{1}{2}$ (MSE)


2 x

- 2. 1 Dice
- 1. NMI: normalized mutual information
- 2. IoU: intersection over unit
- **3. SSIM:** structure similarity index metrics
- 4. PSNR: peak signal to noise ratio

AE results (fold 1)

VAE:

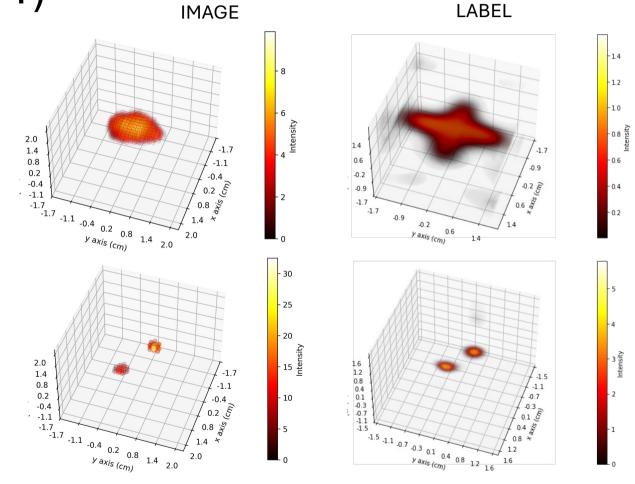
• IoU:5%

• SSIM: 0.43 +/- 0.02

• PSNR: 10 +/- 2

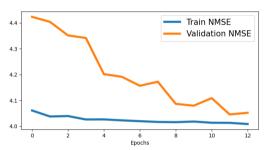
• MSE: 0.10

• NMI: 1.02


VAE:

• IoU: 20%

• SSIM: 0.6 +/- 0.07


• PSNR: 32 +/- 4

• MSE: 0.05

BA Team @ Collaboration meeting

AE results (fold 2)

VAE:

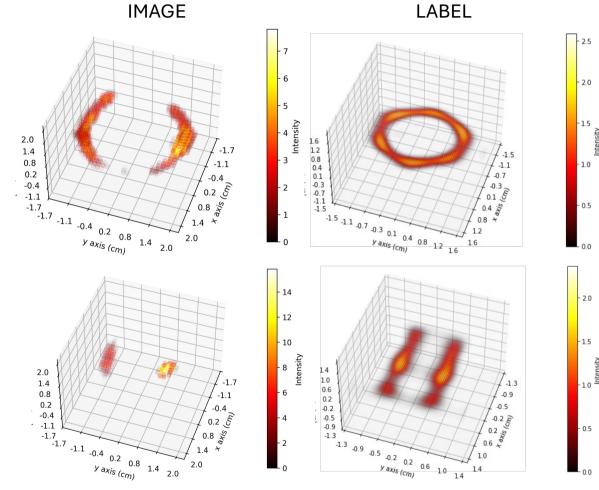
• IoU: 70%

• SSIM: 0.65 +/- 0.09

• PSNR: 12 +/- 2

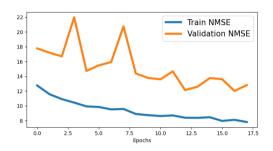
• MSE: 0.09

• NMI: 1.04


VAE:

IoU: 8%

• SSIM: 0.45 +/- 0.1


• PSNR: 15 +/- 3

• MSE: 0.12

BA Team @ Collaboration meeting

U-Net results (fold 1)

U-Net:

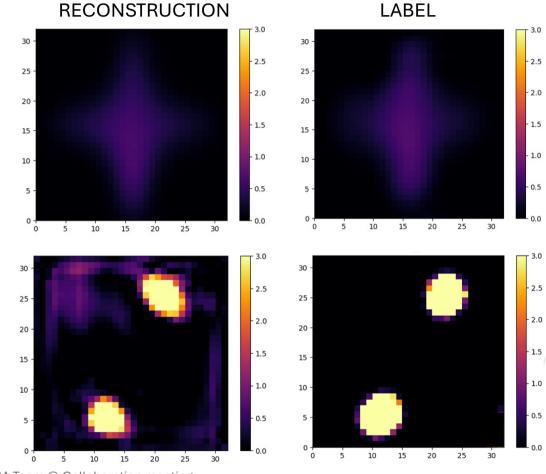
• IoU: 58%

• SSIM: 0.71 +/- 0.05

• PSNR: 27 +/- 0.7

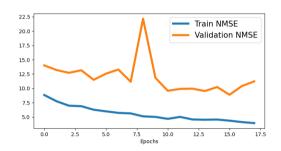
• MSE: 0.06

• NMI: 1.08


U-Net:

• IoU: 71%

• SSIM: 0.82 +/- 0.01


• PSNR: 33 +/- 1

• MSE: 0.07

BA Team @ Collaboration meeting

U-Net results (fold 2)

U-Net:

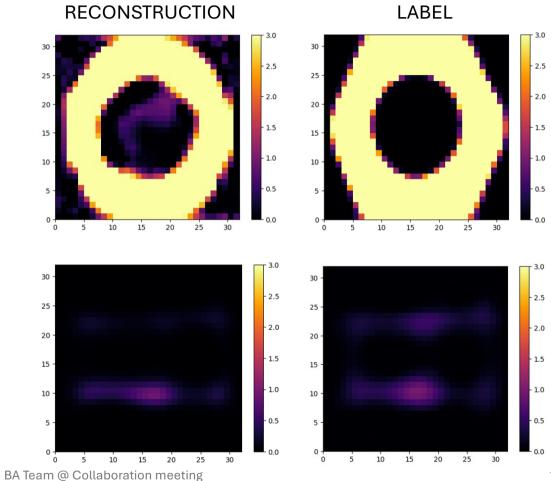
• IoU: 89%

• SSIM: 0.88 +/- 0.02

• PSNR: 28 +/- 3

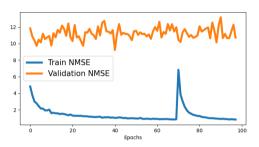
• MSE: 0.05

• NMI: 1.62


U-Net:

• IoU: 81%

• SSIM: 0.86 +/- 0.03


• PSNR: 31 +/- 3

• MSE: 0.11

04/2025

VAE results (fold 1)

VAE:

• IoU: 32%

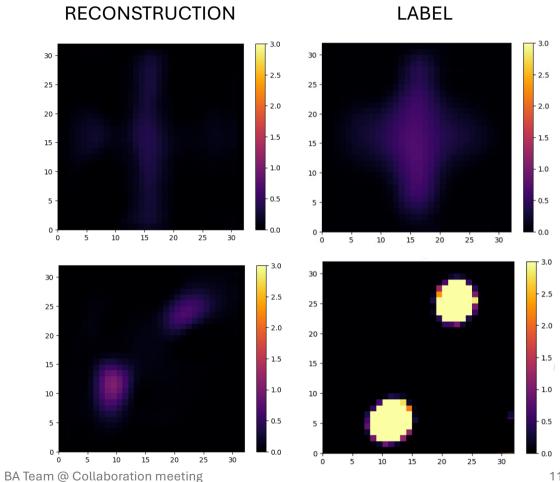
• SSIM: 0.21 +/- 0.1

• PSNR: 14 +/- 1

• MSE: 0.8

• NMI: 1.07

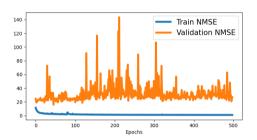
VAE:


• IoU: 45%

• SSIM: 0.42 +/- 0.2

• PSNR: 22 +/- 3

• MSE: 0.7


• NMI: 1.01

04/2025

11

VAE results (fold 2)

VAE:

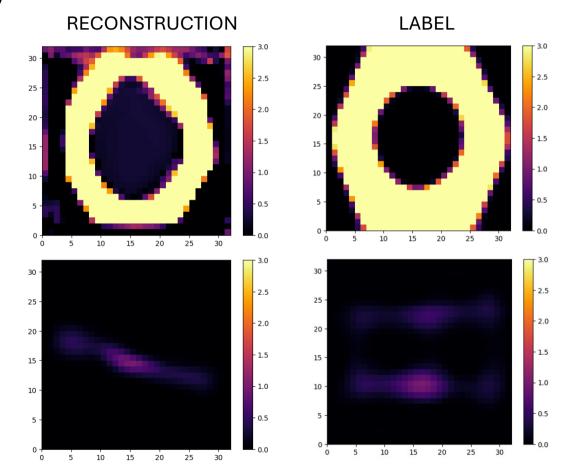
• IoU: 79%

• SSIM: 0.73 +/- 0.07

• PSNR: 24 +/- 0.9

• MSE: 0.13

• NMI: 1.05


VAE:

• IoU: 14%

• SSIM: 0.3 +/- 0.07

• PSNR: 19 +/- 2

• MSE: 0.53

BA Team @ Collaboration meeting

Thanks

BA Team @ Collaboration meeting

Backup slides BA Team @ Collaboration meeting

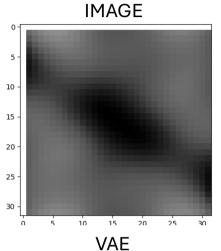
Deep Learning results

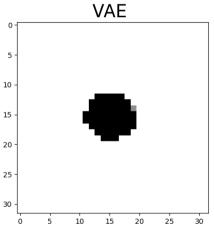
VAE:

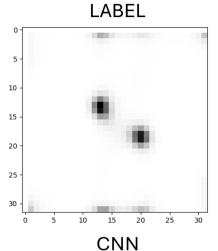
• IoU: 20%

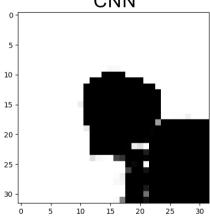
• SSIM: 0.89 +/- 0.07

• PSNR: 32 +/- 4

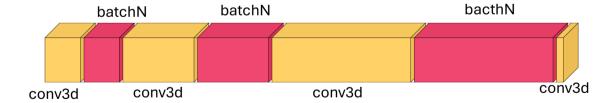

• MSE: 1.09

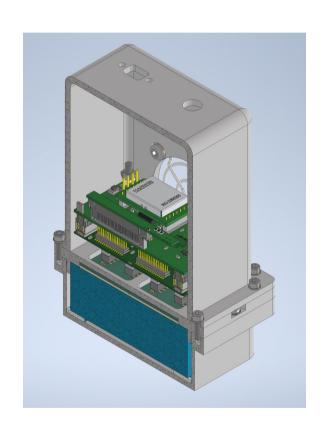

CNN:

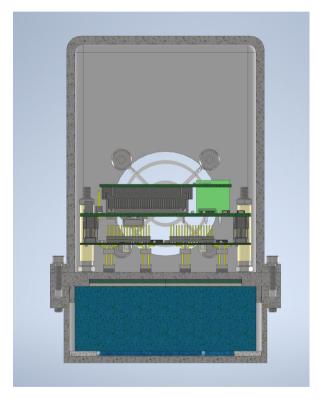

• IoU: 9%

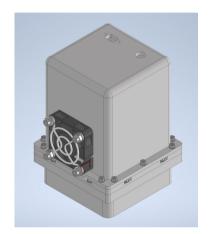

• SSIM: 0.74 +/- 0.09

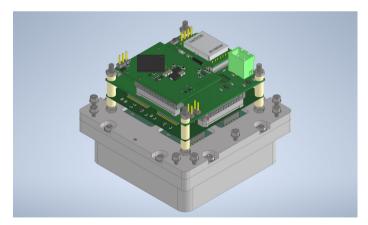
• PSNR: 15 +/- 2



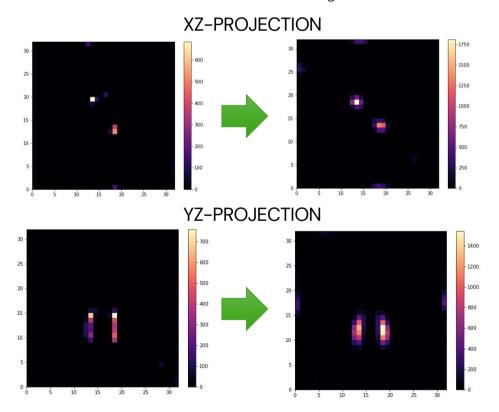

Deep Learning architectures


- 1. Convolutional Neural Network (CNN):
 - Input tensor (32,32,32,1)
 - No strides


	Layer (type)	Output Shape	Param #
	conv3d_7 (Conv3D)	(None, 32, 32, 32, 32)	896
:	batch_normalization_11 (BatchNormalization)	(None, 32, 32, 32, 32)	128
	conv3d_8 (Conv3D)	(None, 32, 32, 32, 64)	55,360
	batch_normalization_12 (BatchNormalization)	(None, 32, 32, 32, 64)	256
	conv3d_9 (Conv3D)	(None, 32, 32, 32, 128)	221,312
	batch_normalization_13 (BatchNormalization)	(None, 32, 32, 32, 128)	512
	conv3d_10 (Conv3D)	(None, 32, 32, 32, 1)	3,457



Mechanical layout for detector case



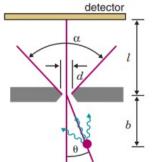
17/01/2025 BA Team @ Collaboration meeting 17

Vials reconstruction corrected

- Correction parameters: $\alpha = 0.85, 0.95, 0.99, 0.85$ (0-180 deg)
- Projection image correction: I = I₀ α·I_{background}

CORRECTED TOMOGRAPHY 800 700 - 500 -Intensity 2.5 1.7 8.0 - 300 0.0 -0.8 200 -2.5 -1.7 -0.8 - 100 0.0 0.8 1.7 2.5 y axis (cm)

- Pixel side: 1.56 mm
- Vials reconstructed with ~ 12-14 mm distance


Tomography reconstruction

 Method: Ordered Subset Expectation Maximization (OSEM) GPU accelerated (already implemented in Pytomography) widely used for SPECT tomography*

$$\lambda(\text{new})_{j} = \frac{\lambda(\text{old})_{j}}{\sum_{D_{n}} \sum_{D_{m}} \sum_{i \in S_{L}} C_{ij(nm)}} \times \sum_{D_{n}} \sum_{D_{m}} \sum_{i \in S_{L}} C_{ij(nm)} \left(\frac{Y_{i(nm)}}{\sum_{K} C_{ik(nm)} \lambda(\text{old})_{k}} \right),$$

where $\lambda = \text{image variable}$, $C_{ii} = \text{system matrix}$, $Y_i = \text{Count}$ number of photon, $D_n = GPU$ domain length (horizontal thread number), and $D_m = \text{GPU}$ domain length (vertical thread number).

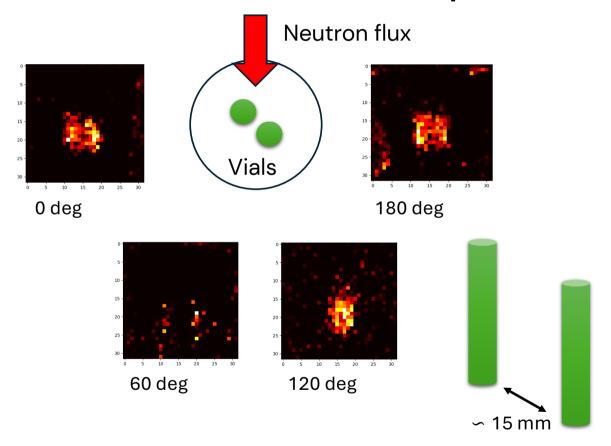
Collimator resolution function :

$$R_{\rm coll} \approx d_{\rm eff,R}(l+b)/l$$

$$R_{
m coll} pprox d_{
m eff,R}(l+b)/l$$
 $d_{
m eff,R} = d + rac{\ln{(2)}}{\mu} an iggl(rac{lpha}{2} iggr)$

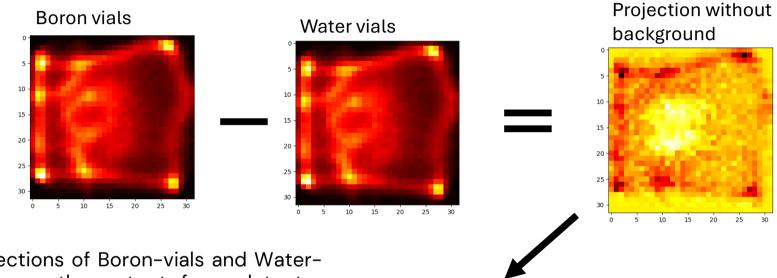
* GPU-based prompt gamma ray imaging from boron neutron capture therapy

** Physics in Nuclear Medicine. Simon R. Cherry, James A. Sorenson and Michael E. Phelps


New function!!!

$$R_{coll} = \left(\frac{x}{f}\right) \sqrt{R_d^2 + \left(\frac{f+x}{x+\frac{CH}{2}}\right) * d_e^2}$$

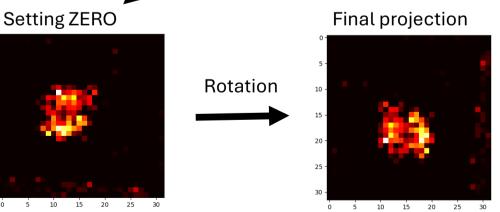
 R_d = 3.0 mm, intrinsic resolution f = 30 cm, distance collimator-detector x = 30 cm, distance collimator-source $d_{\rho} = 5$ mm, pinhole diameter


 $CH = 48.04 \, \text{mm}$, channel length

LENA beam test set-up

- 4 projections [0, 60, 120, 180 deg]
- Projections obtained by difference between boron sample and water sample (see next slide)
- Boron vials concentration 7371 ppm @ 70 kW reactor power
- Pytomography algorithm for tomography reconstruction

Data preprocessing

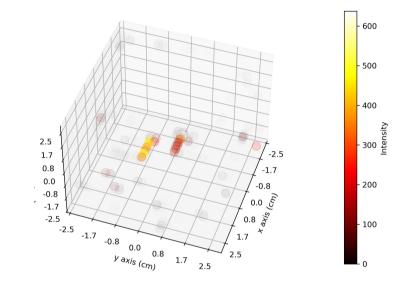


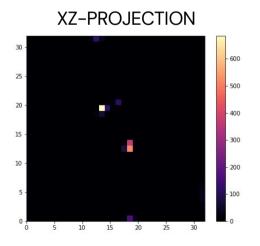
10 -

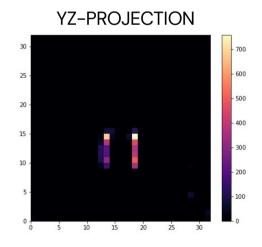
15 -

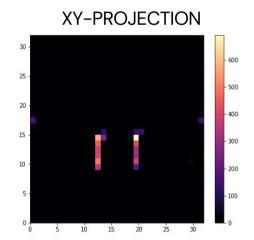
20 -

- Projections of Boron-vials and Watervials are the output from detector Neural Network
- Once removed background (Watervials) from projections of Boron-vials, the negative values were set to ZERO


Vials reconstruction results


• iterations: 50, subsets: 3

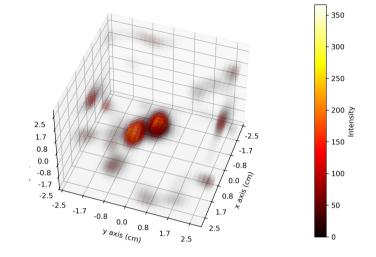

• Pixel side: 1.56 mm


• Vials reconstructed with ~ 15-17 mm distance

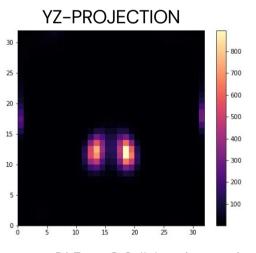
· Higher dose on vial nearest to beam port

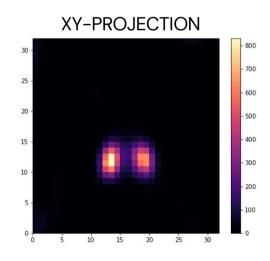
18/10/2024 BA Team @ Collaboration meeting

22


Vials reconstruction results corrected

• iterations: 20, subsets: 3


• Pixel side: 1.56 mm


• Vials reconstructed with ~ 12-14 mm distance

Corrected images with Polimi attenuation factors

BA Team @ Collaboration meeting