

In vitro experiments on cells and computational studies on ¹¹¹Ag

From the cells (UMR-106 and LNCaP) to the patient.

S. Bortolussi on behalf of the Pavia radiobiology group

June 18th, 2025

Special thanks to Laura Cansolino and Francesca Rana

- I. Cytotoxicity study of cold Ag, Pd and Ag+Pd on UMR-106 cells
- II. Clonogenic assay for ¹¹¹Ag on UMR-106 cells
- III. Computation of the cellular S-values for 111 Ag on LNCaP cells
- IV. Clonogenic assay for ¹¹¹Ag on LNCaP cells
- V. Nuclear foci assay for ¹¹¹Ag on UMR-106 cells
- VI. Radiation dosimetry of ¹¹¹Ag in a clinical case study
- **VII. Next experiment**

Ag effects

Time point	C_{Ag} [μ M]	SF
	4.02	0.84 ± 0.07
1 days	8.34	0.89 ± 0.07
4 days	16.69	0.84 ± 0.07
	33.37	1.18 ± 0.09
6 days	3.09	1.13 ± 0.12
	6.18	0.93 ± 0.10
	12.05	0.85 ± 0.10
	24.10	1.07 ± 0.12

Pd effects

Time point	$C_{Pd} [nM]$	SF
	0.53	1.11 ± 0.09
1 days	1.10	0.86 ± 0.07
4 days	2.20	0.69 ± 0.06
	4.40	0.71 ± 0.06
	0.41	1.50 ± 0.14
6 days	0.81	1.33 ± 0.13
0 days	1.59	1.52 ± 0.15
	3.18	1.00 ± 0.11

a

Ag+Pd effects

Time point	$C_{\text{Ag}} \left[\mu \mathbf{M} \right]$	$C_{\rm Pd}$ [nM]	SF
	2.00	0.26	1.24 ± 0.13
1 days	4.17	0.55	0.99 ± 0.08
4 days	8.34	1.10	1.54 ± 0.11
	16.69	2.20	1.12 ± 0.12
	1.55	0.20	0.95 ± 0.09
6 days	3.09	0.41	1.27 ± 0.11
	6.03	0.79	0.99 ± 0.09
	12.05	1.59	1.15 ± 0.10

B CTR B 2.00µM(Ag)+0.26 nM(Pd) - 1.55µM(Ag)+0.20 nM(Pd) B CTR B 4.17µM(Ag)+0.55 nM(Pd) - 3.09µM(Ag)+0.41 nM(Pd)

30 CTR 30 8.34μM(Ag)+1.10 nM(Pd) - 6.03μM(Ag)+0.79 nM(Pd) 30 CTR 30 16.69μM(Ag)+2.20 nM(Pd) - 12.05μM(Ag)+1.59 nM(Pd)

- No evidence of *in vitro* cytotoxicity for cold Ag, Pd and Ag+Pd compounds at the concentrations administered.
- Why did rats die? Possible arising of physiological effects that cannot be translated *in vitro*.
- So what?

Discussion

The sole responsible for the clonogenic death of UMR-106 cells irradiated by ^{111}Ag is the radiation.

Experimental data on the survival fraction can be fitted with radiobiological models.

Clonogenic assay for ¹¹¹Ag on UMR-106 cells

Data analysis and modelling - LQ

Clonogenic assay for ¹¹¹Ag on UMR-106 cells

Data analysis and modelling - IndRep

Computation of the cellular S-values for LNCaP cells

Self-absorbed dose

[µGy/(Bq⋅s)]	A designed and the second seco	
163.0		
113.3	1	
163.5		
150.0		

		5
St	Starmer of a	

¹¹¹ Ag decay site	Target region	S _{self} [µGy/(Bq·s)]
Membrane	Cytoplasm	163.0
	Nucleus	113.3
Cytoplasm	Cytoplasm	163.5
	Nucleus	159.0
Nucleus	Cytoplasm	107.0
	Nucleus	654.1

Computation of the cellular S-values for LNCaP cells

Cross-fire dose

¹¹¹ Ag decay site	Radioactive volume [ml]	Target region	Senv [Gy·ml/(Bq·s)]
Pottom culture medium	9.997×10^{-4}	Cytoplasm	1.09×10^{-12}
Bottom culture medium	2.027 × 10	Nucleus	1.18×10^{-12}
Top culture medium	4.9395×10^{-2}	Cytoplasm	1.98×10^{-11}
		Nucleus	$2.26 imes 10^{-11}$

Clonogenic assay for ¹¹¹Ag on LNCaP cells

A new cell line for our laboratory

LNCaP cells observed at the microscope

Administration of ¹¹¹Ag in the Petri dishes

Clonogenic assay for ¹¹¹Ag on LNCaP cells

CONDITION	INITIAL CELL SEEDING
CTR	100, 250, 500
13 -10 μl	100, 250, 500
27 - 20 µl	100, 250, 500
54 - 39 μl	250, 500, 1000
108 - 78 μl	250, 500, 1000, 5000

Time point	D [Gy]	SF
	0.37 ± 0.04	0.64 ± 0.06
4 days	0.78 ± 0.09	0.30 ± 0.04
4 days	1.56 ± 0.18	0.08 ± 0.01
	3.11 ± 0.37	0.05 ± 0.01
	0.40 ± 0.05	0.72 ± 0.08
6 days	0.79 ± 0.09	0.45 ± 0.06
6 days	1.55 ± 0.18	0.34 ± 0.04
	3.10 ± 0.37	0.19 ± 0.02

Nuclear foci assay for ¹¹¹Ag on UMR-106 cells

UMR-106 cells treated with ¹¹¹Ag on February 2025 will be soon analyzed using the fluorescence microscopy technique to count the *nuclear foci* induced by the ionizing radiations. The dedicated microscope has been recently installed at the authorized hot laboratory in Pavia.

Radiation dosimetry of 111 Ag in a clinical case study

MNCP simulation on a human prostate CT voxelized model

Radiation dosimetry of ¹¹¹Ag in a clinical case study

Radiopharmaceutical in the whole prostate – Energy deposition meshes

Figure 6.8: *MCNP* plotter rendering the TMESH Type 3 data following the 350 keV β^- emission from the whole prostate, with the legend showing the energy deposition ranges (in MeV/cm³) for each voxel within the mesh.

Figure 6.9: *MCNP* plotter rendering the TMESH Type 3 data following the 342 keV photon emission from the whole prostate.

Radiation dosimetry of $^{111}\mathrm{Ag}$ in a clinical case study

Radiopharmaceutical in the whole prostate - Mean dose to the prostate per decay

Radiation	Tally Sco	ore
Electron ($E = 350 \text{ keV}$)	+F6 6.045 · 10 ⁻³ *F8 4.032 · 10 ⁻	⁻³ [MeV/g] ⁻⁴ [MeV]
Photon ($E = 342 \text{ keV}$)	+F6 2.092 · 10 ⁻⁴ *F8 1.395 · 10 ⁻⁴	⁴ [MeV/g] ⁻⁵ [MeV]

Figure 6.13: *MCNP* plotter rendering the TMESH Type 3 data following the 342 keV photon emission from the nodule.

Radiation dosimetry of $^{111}\mathrm{Ag}$ in a clinical case study

Radiopharmaceutical in a 0.5 $\rm cm^3$ nodule - Mean dose to healthy and cancer tissue/ decay

Radiation	Tally	Score	
Electron (E = 350 keV) Photon (E = 342 keV)	+F16 *F18 +F16 *F18	$\begin{array}{c} 6.356 \cdot 10^{-1} \ \mathrm{MeV/g} \\ 4.239 \cdot 10^{-2} \ \mathrm{MeV} \\ \hline 6.881 \cdot 10^{-3} \ \mathrm{MeV/g} \\ 4.590 \cdot 10^{-4} \ \mathrm{MeV} \end{array}$	$D_{\text{nodule}} = 1.02 \cdot 10^{-10} \text{ Gy/decay}$
Radiation	Tally	Score	
Electron ($E = 350 \text{ keV}$)	+F6 *F8	$\begin{array}{c} 3.388 \cdot 10^{-7} \ \mathrm{MeV/g} \\ 2.260 \cdot 10^{-8} \ \mathrm{MeV} \end{array}$	$D_{1} = 1.25 \cdot 10^{-15} \text{ Gy/decay}$
Photon (E = 342 keV)	+F6 *F8	$\frac{1.115 \cdot 10^{-4} \text{ MeV/g}}{7.438 \cdot 10^{-6} \text{ MeV}}$	Dencalthy ussue = 1.20 10 Oyldeedy

Next experiment

- The nuclear foci assay will be repeated on the LNCaP cell line.
- Apart from the CTR conditions, the Petri dishes will be put in contact with ¹¹¹Ag on 3 July 2025: half of them will be kept in contact for 4 d, half for 6 d, as done in the previous assays.
- The protocol for the nuclear foci assay will be applied.

Thank you!