

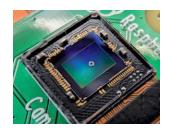
Laboratori Nazionali di Legnaro – INFN

Work Package 2: activities and prospects

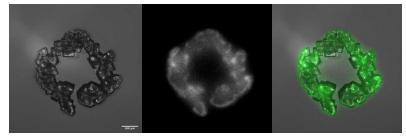
M. Lunardon and D. Serafini on behalf of the ADMIRAL WP2

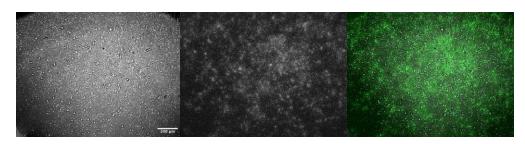
June 18th, 2025

Outline



- Beta detection state of the art
- DUMBO explained
- Updates of the ADMIRAL WP2
 - Mechanics status
 - Electronics status
 - Simulation status and scaffolds
- Experiments


State of the art of beta imaging



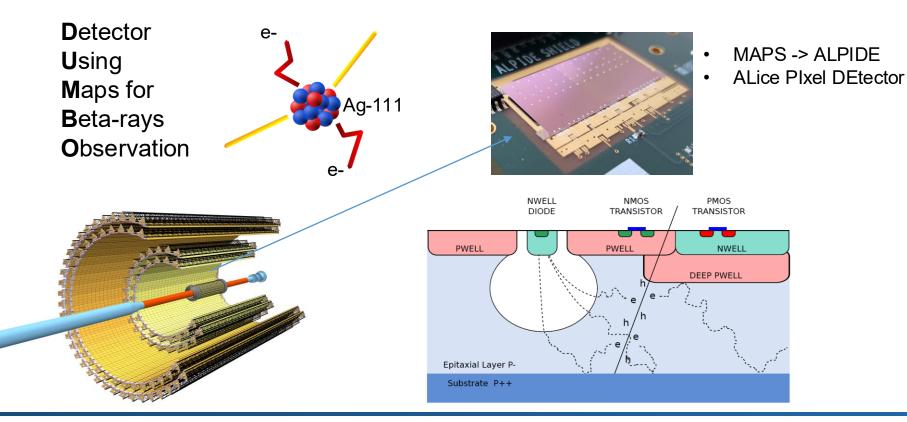
Beta detector of INFN-Pisa

Test with 18F-FDG

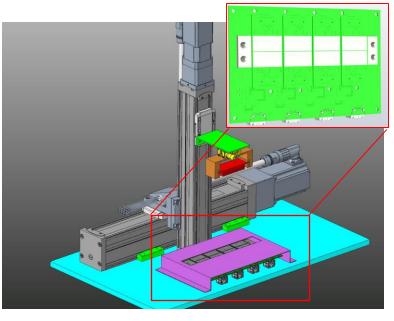
Test with cells taking up 18F-FDG

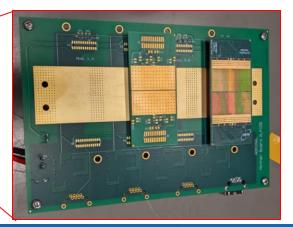
 Test at CAPiR in June with cells uptaking Ag-111

Why DUMBO?


- Features of DUMBO
 - Sample isolated from the detector
 - Spatial resolution of about 1 mm at 500 um distance
 - Large sensitive area (15x30 mm²)
 - Scanner function using motors to increase FoV
 - Easy to use
- Applications
 - Cell clusters imaging in-vitro for uptake
 - Imaging of 2.5D scaffolds

DUMBO




DUMBO

- 8 ALPIDE chips are the sensitive elements
- Mechanics system to place the sample
 - o x-y movement

WP2 ADMIRAL GANTT

		Year 1				Year 2				Year 3				Notes
		M3	M6	M9	M12	M15	M18	M21	M24	M27	M30	M33	M36	Required for
	WP1 - Radiopharmaceutical production													
MS1.0	Optimization of Ag-111 production and Ag/Pa separation	\rightarrow			0									MS1.1
MS1.1	Routine production of Ag-111 at the LENA facilities, purification and quality control					\rightarrow			•					MS1.2
MS1.2	Synthesis of improved stable Ag chelators and radiochemical characterization	\rightarrow							0					MS1.3, MS2.3, MS3.3, MS4.1, MS4.2
MS1.3	Development of the macromolecule for active targeting									\rightarrow			•	MS4.2, MS4.4
MS1.4	Bioengineering of 3D scaffolds for in vitro tissue mimicking					\rightarrow	0		0		0		•	MS4.2
	WP2 - β-Imaging													
MS2.0	Development of the detector control firmware prototype	\rightarrow			•									MS2.3
MS2.1	Preliminary Monte Carlo simulations for mechanics and detector design	\rightarrow		0				•						MS2.3
MS2.2	Electronics and mechanics design	\rightarrow			0		0		•					MS2.3
MS2.3	β -detector characterization							\rightarrow	0		•			MS2.4, MS4.4
MS2.4	β-imaging test with Ag-111							\rightarrow	0				•	MS4.4
	WP3 - γ-Imaging													
MS3.0	Sizing of the detector components according to the required spatial resolution	\rightarrow	0											MS3.1, MS3.2
MS3.1	Preliminary Monte Carlo simulations for detector design	\rightarrow			0									MS3.2
MS3.2	Planar imaging detector construction for Ag-111 γ detection					\rightarrow			0					MS3.3
MS3.3	Characterization of the planar system for γ-imaging							\rightarrow			0			MS3.4
MS3.4	γ-imaging test with Ag-111							\rightarrow					0	
MS4.0	Evaluation of the cellular dose as function of the injected activity via Monte Carlo simulations	\rightarrow			•									MS4.4
	Cell survival tests in 2D Petri dishes					\rightarrow			0					MS4.4
	Cell survival tests in 3D scaffold dynamic cultures							\rightarrow	0				•	MS4.4
	Comparison between different Monte Carlo codes (Geant4, MCNPX, PHITS)	\rightarrow			•									MS4.4
MS4.4	Dose computation in cell cultures using Monte Carlo codes and cell survival prediction					\rightarrow			0				•	MS4.1, MS4.2
\rightarrow	Activity started													
0	Checkpoint (preliminary/partial results required to start other subsequent activities)													

Active WP2 personnel

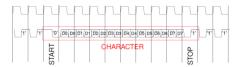
Staff:

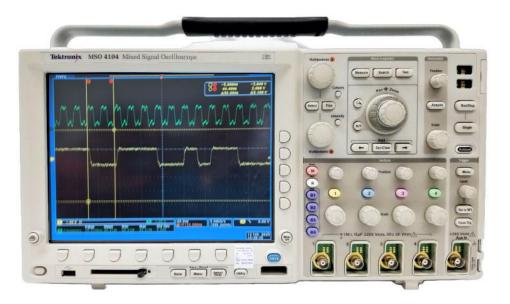
- Marcello Lunardon -> WP leader
- Piero Giubilato -> Resources
- Sandra Moretto -> Resources
- Devis Pantano -> ALPIDE electronics
- Lorenzo Castellani -> ALPIDE electronics
- Roberto Michinelli -> mechanics designer

PhD students:

- Aurora Leso -> Geant4 simulation
- Davide Serafini -> experimental setup

Bachelor students:


- Sofia Busatto -> Geant4 simulation
- Tommaso Coppelli -> movement tests and phantoms
- Edoardo Cervi Gambaro -> ALPIDE tests



ALPIDE communication

- Communication with the ALPIDE
- Bachelor thesis of Edoardo Cervi Gambaro

ALPIDE Operations Manual

ALICE ITS ALPIDE development team

July 25, 2016 Version: 0.3 Status: DRAFT

Festo motors control

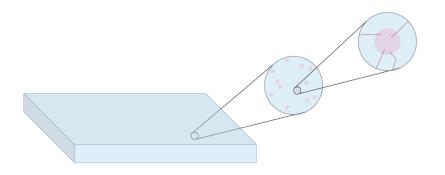
- Two motors for two axes
- One micrometric manual traslator on the 3rd axis.

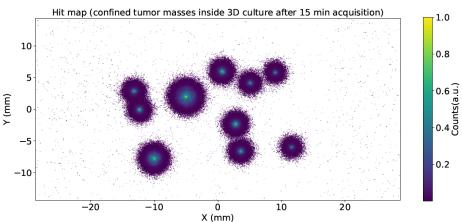
Festo automation suite can be be used for manual and automatic control

Festo-edcon python library for modbus communication with the motors

- Python scripts with several target positions
 - Integration with ALPIDE communication python script
- Bachelor thesis of Tommaso Coppelli

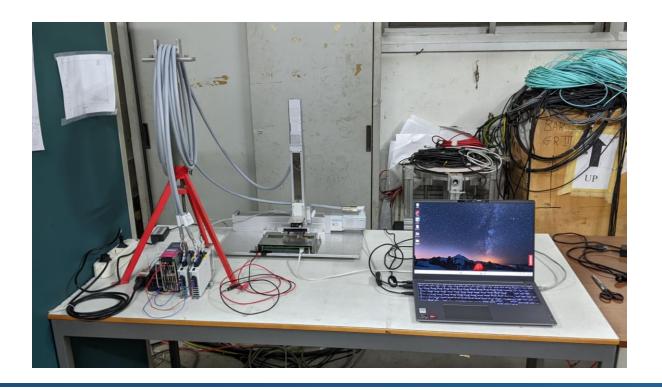
Simulation





- Simulation framework developed by <u>Vittoria Pavanello</u>
- Different experimental conditions can be simulated

Thesis of Sofia Busatto

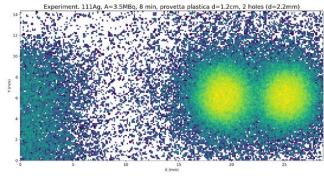


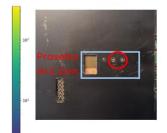
Debugging setup

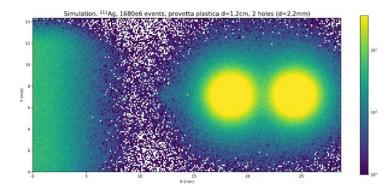
One python script:

- Motors movement
- Chip communication

Last experiment in 2024

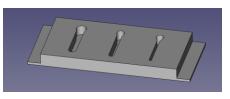





Beta detector tests at LENA:

- Characterized the ALPIDE sensor
 - No mechanics
- Validated the Geant4 simulations
- Ag-111 solution in big vials (diameter 12.5 mm)
 - With collimator

Due fori di d=2.2 mm



Next experiment in July 2025

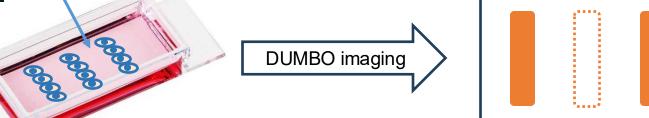
Designed by Tommaso Coppelli

DUMBO tests at LENA:

- Characterize the whole device
 - ALPIDE chip (still temporary)
 - Movement system

Preliminary tests

- Study of diffusion of Ag-111 ions
 - In GelMA scaffolds prepared ad the radiolab of Pavia in collaboration with the BIOtech of Trento BIOtech
- Evaluation of the spatial resolution
 - o In plastic phantoms


Future experiments

Experiments with cells:

- Estimate uptake of different cell lines in the same culture
 - Uptake of Ag-111 ions
 - Uptake of Ag-111 radiopharmaceutical

Thanks

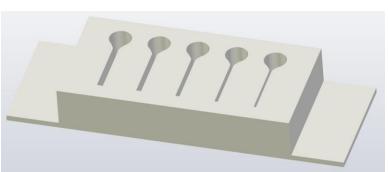
Back-up

Differences

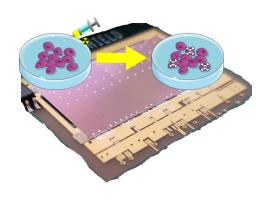
Beta detector with CMOS:

Spatial resolution

DUMBO:


Spatial resolution

Phantoms


- µ-slide 1 well coverslips used for 2.5D scaffolds
- Phantoms realized with:
 - Same external geometry
 - Same bottom layer thickness: 180 um
 - Lines with well-defined thicknesses
- Design of Tommaso Coppelli

Experiments

- Future experiments with cells:
 - Image the radioactive cells clusters in 3D scaffolds
 - Estimate the cellular radiopharmaceutical uptake

