

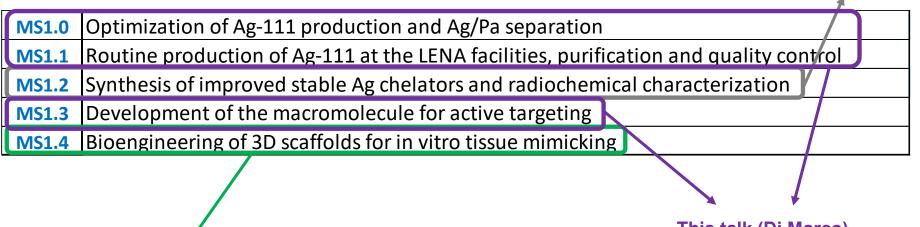
Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

Laboratori Nazionali di Legnaro – INFN

Work Package 1: activities 2025

V. Di Marco, D. Maniglio

June 18th, 2025


Brief review of WP1 activities in 2025: I. (Di Marco) II. (Maniglio)

Done

This talk (Maniglio)

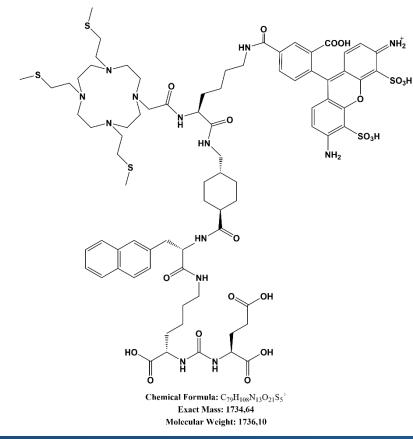
This talk (Di Marco)

	NF Ń
Istituto Nazionale	di Fisica Nucleare

MS1.0	Optimization of Ag-111 production and Ag/Pa separation

Routine production of Ag-111 at the LENA facilities, purification and quality control **MS1.1**

Synthesis of improved stable Ag chelators and radiochemical characterization **MS1.2**


Development of the macromolecule for active targeting **MS1.3**

Bioengineering of 3D scaffolds for in vitro kissue mimicking **MS1.4**

> Cooperation agreement in due course with A.C. Eder, University of Freiburg, Department of Nuclear Medicine, Germany

Expected shipping date from Germany: July 2025

MS1.0	Optimization of Ag-111 production and Ag/Pa separation				
MS1.1	Routine production of Ag-111 at the LENA facilities, purification and quality control				
MS1.2	Synthesis of improved stable Ag chelators and radiochemical characterization				
MS1.3	Development of the macromolecule for active targeting				
MS1.4	Bioengineering of 3D scaffolds for in vitro tissue mimicking				

Brief review of WP1 activities in 2025 NFN

Just arrived (17/06/2025): results of the ICP-MS analysis of ¹¹¹Ag/¹¹⁰Pd separations

Resin/sample	Pd (ppb) ¹¹¹ Ag/ ¹¹⁰ Pd							
LN1-1	4765							
LN1-2	2230		Data are in good agreement with					
LN1-3	3300	Data are ir						
LN1-4	43		previous analyses (March, 2025) performed on ^{nat} Ag/ ^{nat} Pd separation Pd (ppb) ^{nat} Ag/ ^{nat} Pd					
LN2-5	481	-						
LN2-6	292	periormed						
LN2-7	385							
LN2-8	23							
TK200-9	3		2.6					
TK200-10	1.5		2.4					
TK200-11	11		0.5					
TK200-12	0.26		2.1					

Month	Starting date	# Activity [MBq]	# Activity [mCi]	Experiment
January	27/01/2025	55,5	1,5	SPECT imaging with phantoms
February	10/02/2025	20	0,5	Vitro (UMR-106 foci)
March	31/03/2025	60	1,6	Vitro (MDA-MB-231 uptake and clonogenic assay)
April				
Мау	12/05/2025	18	0,5	Vitro (LNCaP clonogenic assay) + γ imaging
June	16/06/2025	60	1,6	Vitro (MDA-MB-231 foci assay)
July	30/06/2025	18	0,5	Vitro (LNCaP foci) + γ and β imaging
August				
September		18	0,5	Vitro 3D (LNCaP) + γ and β imaging
October				Imaging test with phantoms (Ag-111 vs Lu-177)
November		18	0,5	Vitro + γ and β imaging (extra tests)
December		60	1,6	Vitro (extra tests)

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

Advancement in the creation of 2.5D constructs

Annual meeting of WP1

September 13rd, 2024

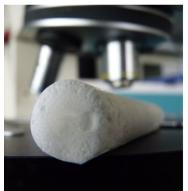
Planned Activities

		Year 1			Year 2					
		M3	M6	M9	M12	M15	M18	M21	M24	M27
WP1	MS1.1		•	Prod	uction of 111	Ag at the LE	ENA fa <mark>ci</mark> lities a	and Ag-111	purifica <mark>ti</mark> on a	nd quality
	MS1.2		6		Synthesis of		nolecule for A	- ·	· ·	eted delive
	MS1.3	Macromolecules modification with fluorescent dye for confocal microscopy imaging								
	MS1.4				Bioe	ngine <mark>e</mark> ring c	of 3D scaffold	ls fo <mark>r</mark> in v <mark>it</mark> ro	tissue mim <mark>i</mark> c	king

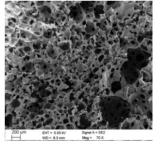
exotic beams for medicine

1-2 - Radiopharmaceutical

Produced radionuclides must be inserted in a **macromolecular context** able to bind and transport them into the tumor tissue where they should **selectively** recognize and associate with cancer cells. The resulting research involves **studying chelators, spacers and targeting agents** to develop a **stable radiopharmaceutical** for ¹¹¹Ag complexation. In addition, **radiochemistry experiments** focused on the dissolution of the irradiated target where ¹¹¹Ag is obtained are required to optimize the radioisotopic purification.



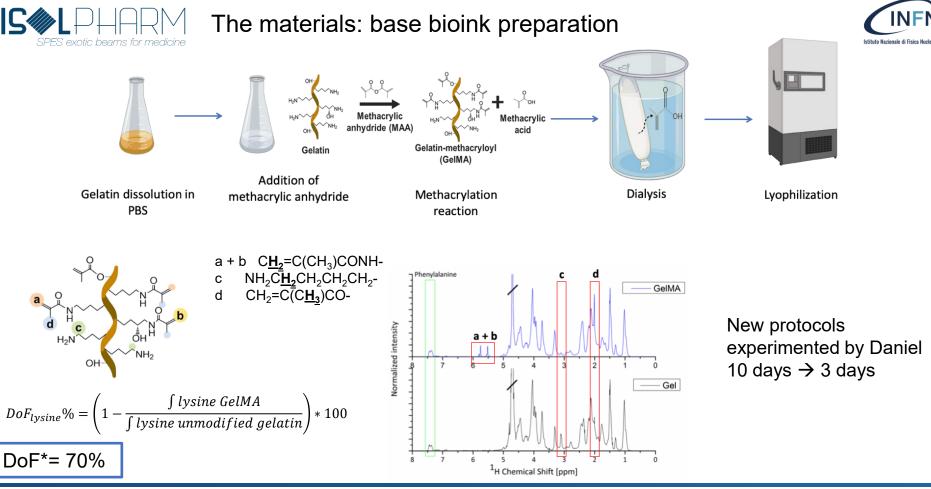
Radiopharmaceutical design & development framework



1-3 - Bioengineering

One of the goals of the new ISOLPHARM project is to extend this kind of studies to targeted radionuclide therapy and to more realistic **dynamic cell cultures** in 3D tissue-mimicking scaffolds, employing the bioengineering expertise of the collaboration.

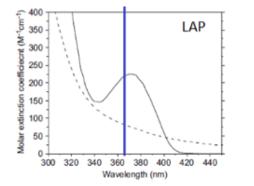
3D printed scaffold.

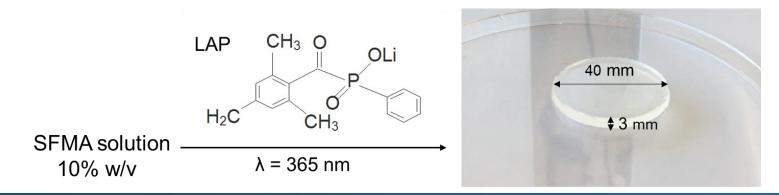


Natural polymer hydrogel embedding cells and supporting them viable and functional

Scaffold

porosity as detected by SEM.




Photoinitiator

Lithium Phenyl-2,4,6-trimethylbenzoylphosphinate (LAP)

- Low cytotoxicity
- High solubility in water
- High absorption at 365 nm (ϵ = 218 M⁻¹cm⁻¹)

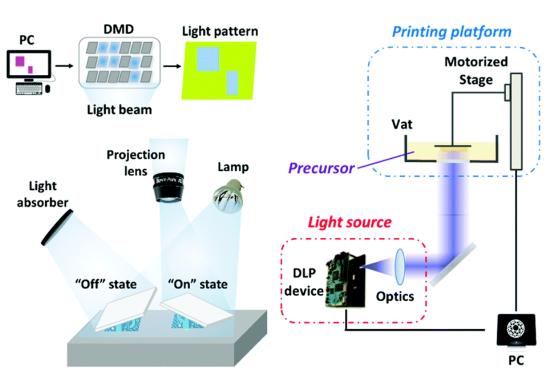
How to turn bioink to a 3D scaffold?

DLP (Digital Light Processing)

Matches Photolithography and SLA advantages:

UNIVERSITY OF TRENTO - Italy

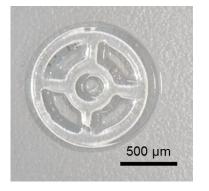
- Maskless
- Each layer is printed at once

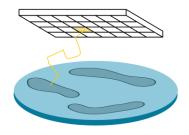

BIOtech

Working principle:

- Projector with LED source for illumination
- DMD (Digital Micromirror Device): digital programmable photomask to control the crosslinkable area
- No CAD modeling but any raster image

Biomaterial requirements:


- Photopolymerizable
- Photoinitiator with low toxicity



Complex patterns with DLP

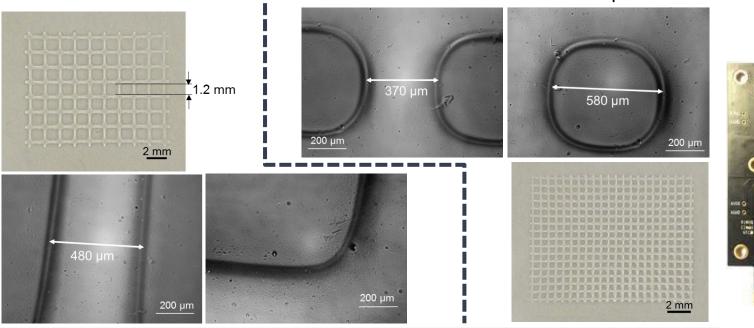
It is optimal for 2D ½ scaffolds design for Beta imaging

BIOtech

Staining used: Betanin

Printed meshes with DLP

Lower limit of printability


Lines = 240 μ m

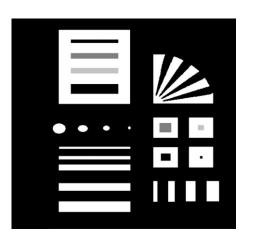
Holes = $480 \,\mu m$

Expected dimensions:

Expected dimensions: Lines = 400 µm Holes = 1200 µm

Geometries suitable to 2D βimaging detector

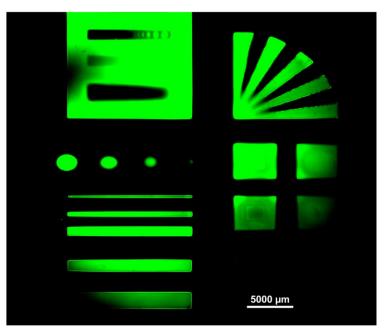
AL PIDE


VisiteD CarterV

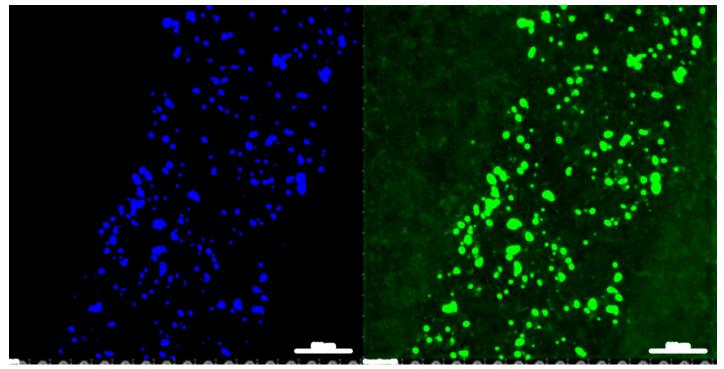
ARRIFR V

Assessing large image printing

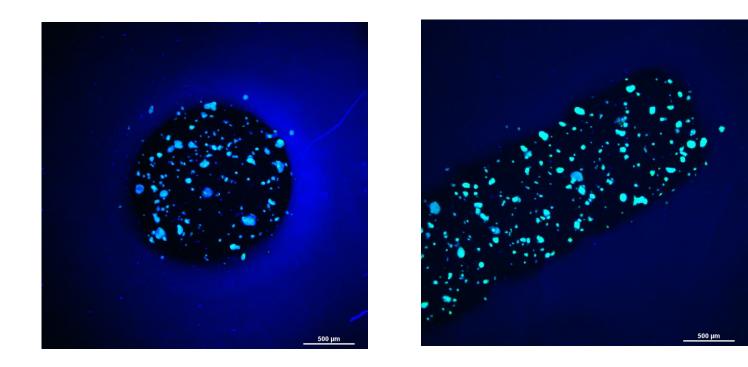
GeIMA 20% + fluorescein dye + 1% LAP



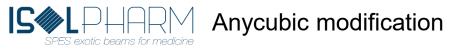
UV Transilluminator



Confocal microscopy

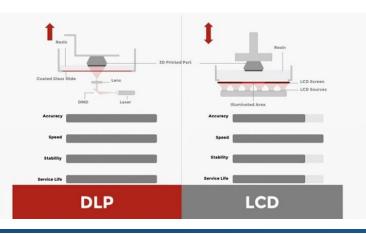


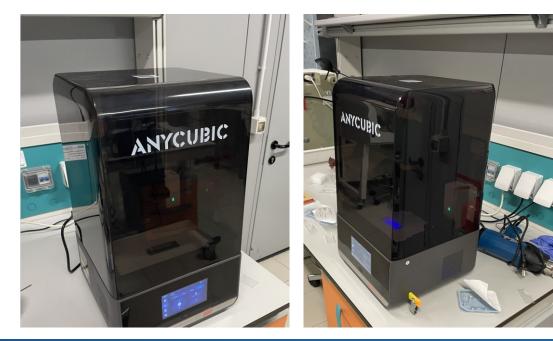
Stripes and cells day 1

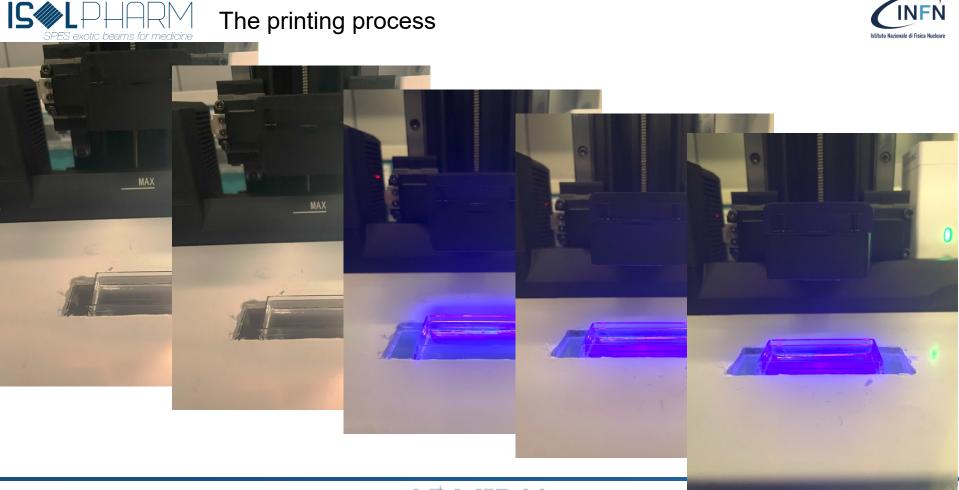

Strategies for developing 2D^{1/2}

Istituto Nazionale di Fisica Nucleare

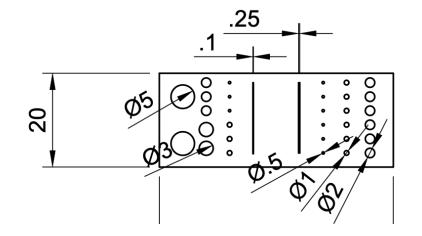
- Finding optimal projection support (sterile – thin interlayer material – transportable – size compatible with gamma camera)
- Adapting twin commercial 3D printers for 2D^{1/2} bioprinting to feed WP2 activities

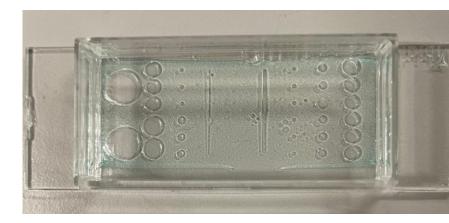


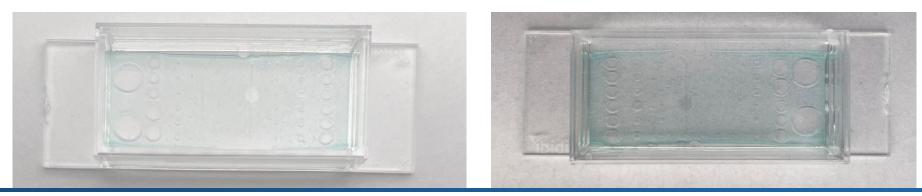




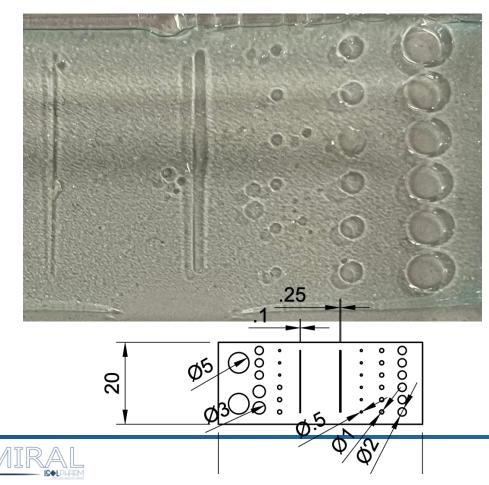
- LCD projector technology (not DLP)
- 405 nm wavelength, compatible with LAP photoinitiator
- Higher resolution for 400 €
- Needs modification







Resulting printed scaffolds


Istituto Nazionale di Fisica Nucleare

High aspect ratio structures are difficult to be printed (0.2 mm limit)

See more in detail

The correct insertion of cells is reasonably made by pipette

There are also some considerations on the volume to be complemented

Thank you

